首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the problem of scheduling n jobs on m parallel machines with inclusive processing set restrictions. Each job has a given release date, and all jobs have equal processing times. The objective is to minimize the makespan of the schedule. Li and Li (2015) have developed an O(n2+mn log?n) time algorithm for this problem. In this note, we present a modified algorithm with an improved time complexity of O(min{m, log?n} ? n log?n).  相似文献   

2.
The classical NP-hard (in the ordinary sense) problem of scheduling jobs in order to minimize the total tardiness for a single machine 1‖ΣT j is considered. An NP-hard instance of the problem is completely analyzed. A procedure for partitioning the initial set of jobs into subsets is proposed. Algorithms are constructed for finding an optimal schedule depending on the number of subsets. The complexity of the algorithms is O(n 2Σp j ), where n is the number of jobs and p j is the processing time of the jth job (j = 1, 2, …, n).  相似文献   

3.
Given a tournament T?=?(X, A), we consider two tournament solutions applied to T: Slater’s solution and Copeland’s solution. Slater’s solution consists in determining the linear orders obtained by reversing a minimum number of directed edges of T in order to make T transitive. Copeland’s solution applied to T ranks the vertices of T according to their decreasing out-degrees. The aim of this paper is to compare the results provided by these two methods: to which extent can they lead to different orders? We consider three cases: T is any tournament, T is strongly connected, T has only one Slater order. For each one of these three cases, we specify the maximum of the symmetric difference distance between Slater orders and Copeland orders. More precisely, thanks to a result dealing with arc-disjoint circuits in circular tournaments, we show that this maximum is equal to n(n???1)/2 if T is any tournament on an odd number n of vertices, to (n 2???3n?+?2)/2 if T is any tournament on an even number n of vertices, to n(n???1)/2 if T is strongly connected with an odd number n of vertices, to (n 2???3n???2)/2 if T is strongly connected with an even number n of vertices greater than or equal to 8, to (n 2???5n?+?6)/2 if T has an odd number n of vertices and only one Slater order, to (n 2???5n?+?8)/2 if T has an even number n of vertices and only one Slater order.  相似文献   

4.
We derive a combinatorial multisum expression for the number D(n, k) of partitions of n with Durfee square of order k. An immediate corollary is therefore a combinatorial formula for p(n), the number of partitions of n. We then study D(n, k) as a quasipolynomial. We consider the natural polynomial approximation \({\tilde{D}(n, k)}\) to the quasipolynomial representation of D(n, k). Numerically, the sum \({\sum_{1\leq k \leq \sqrt{n}} \tilde{D}(n, k)}\) appears to be extremely close to the initial term of the Hardy-Ramanujan-Rademacher convergent series for p(n).  相似文献   

5.
We consider even factors with a bounded number of components in the n-times iterated line graphs L n (G). We present a characterization of a simple graph G such that L n (G) has an even factor with at most k components, based on the existence of a certain type of subgraphs in G. Moreover, we use this result to give some upper bounds for the minimum number of components of even factors in L n (G) and also show that the minimum number of components of even factors in L n (G) is stable under the closure operation on a claw-free graph G, which extends some known results. Our results show that it seems to be NP-hard to determine the minimum number of components of even factors of iterated line graphs. We also propose some problems for further research.  相似文献   

6.
We extend a classical single-machine due-window assignment problem to the case of position-dependent processing times. In addition to the standard job scheduling decisions, one has to assign a time interval (due-window), such that jobs completed within this interval are assumed to be on time and not penalized. The cost components are: total earliness, total tardiness and due-window location and size. We introduce an O(n3) solution algorithm, where n is the number of jobs. We also investigate several special cases, and examine numerically the sensitivity of the solution (schedule and due-window) to the different cost parameters.  相似文献   

7.
In this paper we consider the k-fixed-endpoint path cover problem on proper interval graphs, which is a generalization of the path cover problem. Given a graph G and a set T of k vertices, a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint simple paths that covers the vertices of G, such that the vertices of T are all endpoints of these paths. The goal is to compute a k-fixed-endpoint path cover of G with minimum cardinality. We propose an optimal algorithm for this problem with runtime O(n), where n is the number of intervals in G. This algorithm is based on the Stair Normal Interval Representation (SNIR) matrix that characterizes proper interval graphs. In this characterization, every maximal clique of the graph is represented by one matrix element; the proposed algorithm uses this structural property, in order to determine directly the paths in an optimal solution.  相似文献   

8.
We consider the skeleton of the polytope of pyramidal tours. A Hamiltonian tour is called pyramidal if the salesperson starts in city 1, then visits some cities in increasing order of their numbers, reaches city n, and returns to city 1 visiting the remaining cities in decreasing order. The polytope PYR(n) is defined as the convex hull of the characteristic vectors of all pyramidal tours in the complete graph K n . The skeleton of PYR(n) is the graph whose vertex set is the vertex set of PYR(n) and the edge set is the set of geometric edges or one-dimensional faces of PYR(n). We describe the necessary and sufficient condition for the adjacency of vertices of the polytope PYR(n). On this basis we developed an algorithm to check the vertex adjacency with linear complexity. We establish that the diameter of the skeleton of PYR(n) equals 2, and the asymptotically exact estimate of the clique number of the skeleton of PYR(n) is Θ(n2). It is known that this value characterizes the time complexity in a broad class of algorithms based on linear comparisons.  相似文献   

9.
This paper deals with the pos/neg-weighted p-median problem on tree graphs where all customers are modeled as subtrees. We present a polynomial algorithm for the 2-median problem on an arbitrary tree. Then we improve the time complexity to O(n log n) for the problem on a balanced tree, where n is the number of the vertices in the tree.  相似文献   

10.
We consider the following clustering problem: Given a vector set, find a subset of cardinality k and minimum square deviation from its mean. The distance between the vectors is defined by the Euclideanmetric. We present an approximation scheme (PTAS) that allows us to solve this problem with an arbitrary relative error ? in time O(n 2/?+1(9/?)3/? d), where n is the number of vectors of the input set and d denotes the dimension of the space.  相似文献   

11.
We start a new characterization of the geometric 2-design AG d (n,q) among all simple 2-designs with the same parameters by handling the cases d ∈ {1,2,3,n — 2}. For d ≠ 1, our characterization is in terms of line sizes, and for d = 1 in terms of the number of affine hyperplanes. We also show that the number of non-isomorphic resolvable designs with the parameters of AG1(n,q) grows exponentially with linear growth of n.  相似文献   

12.
Let ?+ be the semiring of all nonnegative integers and A an m × n matrix over ?+. The rank of A is the smallest k such that A can be factored as an m × k matrix times a k×n matrix. The isolation number of A is the maximum number of nonzero entries in A such that no two are in any row or any column, and no two are in a 2 × 2 submatrix of all nonzero entries. We have that the isolation number of A is a lower bound of the rank of A. For A with isolation number k, we investigate the possible values of the rank of A and the Boolean rank of the support of A. So we obtain that the isolation number and the Boolean rank of the support of a given matrix are the same if and only if the isolation number is 1 or 2 only. We also determine a special type of m×n matrices whose isolation number is m. That is, those matrices are permutationally equivalent to a matrix A whose support contains a submatrix of a sum of the identity matrix and a tournament matrix.  相似文献   

13.
This note studies the average-case comparison-complexity of sorting n elements when there is a known distribution on inputs and the goal is to minimize the expected number of comparisons. We generalize Fredman’s algorithm which is a variant of insertion sort and provide a basically tight upper bound: If μ is a distribution on permutations on n elements, then one may sort inputs from μ with expected number of comparisons that is at most H(μ) + 2n, where H is the entropy function. The algorithm uses less comparisons for more probable inputs: For every permutation π, the algorithm sorts π by using at most \(\log _{2}(\frac {1}{\Pr _{\mu }(\pi )})+2n\) comparisons. A lower bound on the expected number of comparisons of H(μ) always holds, and a linear dependence on n is also required.  相似文献   

14.
A 2-coloring of the n-cube in the n-dimensional Euclidean space can be considered as an assignment of weights of 1 or 0 to the vertices. Such a colored n-cube is said to be balanced if its center of mass coincides with its geometric center. Let B n,2k be the number of balanced 2-colorings of the n-cube with 2k vertices having weight 1. Palmer, Read, and Robinson conjectured that for n≥1, the sequence \(\{B_{n,2k}\}_{k=0,1,\ldots,2^{n-1}}\) is symmetric and unimodal. We give a proof of this conjecture. We also propose a conjecture on the log-concavity of B n,2k for fixed k, and by probabilistic method we show that it holds when n is sufficiently large.  相似文献   

15.
The notion of local primitivity for a quadratic 0, 1-matrix of size n × n is extended to any part of the matrix which need not be a rectangular submatrix. A similar generalization is carried out for any set B of pairs of initial and final vertices of the paths in an n-vertex digraph, B ? {(i, j) : 1 ≤ i, jn}. We establish the relationship between the local B-exponent of a matrix (digraph) and its characteristics such as the cyclic depth and period, the number of nonprimitive matrices, and the number of nonidempotentmatrices in the multiplicative semigroup of all quadratic 0, 1-matrices of order n, etc. We obtain a criterion of B-primitivity and an upper bound for the B-exponent. We also introduce some new metric characteristics for a locally primitive digraph Γ: the k, r-exporadius, the k, r-expocenter, where 1 ≤ k, rn, and the matex which is defined as the matrix of order n of all local exponents in the digraph Γ. An example of computation of the matex is given for the n-vertex Wielandt digraph. Using the introduced characteristics, we propose an idea for algorithmically constructing realizable s-boxes (elements of round functions of block ciphers) with a relatively wide range of sizes.  相似文献   

16.
Let f(pn) be the number of pairwise nonisomorphic p-groups of order \(p^n\), and let g(pn) be the number of groups of order \(p^n\) whose automorphism group is a p-group. We prove that the limit, as p grows to infinity, of the ratio g(pn) / f(pn) equals 1/3 for \(n=6,7\).  相似文献   

17.
Let the function \(s_g\) map a positive integer to the sum of its digits in the base g. A number k is called n-flimsy in the base g if \(s_g(nk)<s_g(k)\). Clearly, given a base g, \(g\geqslant 2\), if n is a power of g, then there does not exist an n-flimsy number in the base g. We give a constructive proof of the existence of an n-flimsy number in the base g for all the other values of n (such an existence follows from the results of Schmidt and Steiner, but the explicit construction is a novelty). Our algorithm for construction of such a number, say k, is very flexible in the sense that, by easy modifications, we can impose further requirements on kk ends with a given sequence of digits, k begins with a given sequence of digits, k is divisible by a given number (or belongs to a certain congruence class modulo a given number), etc.  相似文献   

18.
Given a large positive number x and a positive integer k, we denote by Qk(x) the set of congruent elliptic curves E(n): y2= z3- n2 z with positive square-free integers n x congruent to one modulo eight,having k prime factors and each prime factor congruent to one modulo four. We obtain the asymptotic formula for the number of congruent elliptic curves E(n)∈ Qk(x) with Mordell-Weil ranks zero and 2-primary part of Shafarevich-Tate groups isomorphic to(Z/2Z)2. We also get a lower bound for the number of E(n)∈ Qk(x)with Mordell-Weil ranks zero and 2-primary part of Shafarevich-Tate groups isomorphic to(Z/2Z)4. The key ingredient of the proof of these results is an independence property of residue symbols. This property roughly says that the number of positive square-free integers n x with k prime factors and residue symbols(quadratic and quartic) among its prime factors being given compatible values does not depend on the actual values.  相似文献   

19.
We consider a due-window assignment problem on identical parallel machines, where the jobs have equal processing times and job-dependent earliness-tardiness costs. We would like to determine a ‘due window’ during which the jobs can be completed at no cost and to obtain a job schedule in which the jobs are penalized if they finish before or after the due window. The objective is to minimize the total earliness and tardiness job penalty, plus the cost associated with the size of the due window. We present an algorithm that can solve this problem in O(n3) time, which is an improvement of the O(n4) solution procedure developed by Mosheiov and Sarig.  相似文献   

20.
We study the Dyson rank function N(r, 3; n), the number of partitions of n with rank \(\equiv r \pmod 3\). We investigate the convexity of these functions. We extend N(r, 3; n) multiplicatively to the set of partitions, and we determine the maximum value when taken over all partitions of size n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号