首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops necessary conditions for an estimator to dominate the James-Stein estimator and hence the James-Stein positive-part estimator. The ultimate goal is to find classes of such dominating estimators which are admissible. While there are a number of results giving classes of estimators dominating the James-Stein estimator, the only admissible estimator known to dominate the James-Stein estimator is the generalized Bayes estimator relative to the fundamental harmonic function in three and higher dimension. The prior was suggested by Stein and the domination result is due to Kubokawa. Shao and Strawderman gave a class of estimators dominating the James-Stein positive-part estimator but were unable to demonstrate admissiblity of any in their class. Maruyama, following a suggestion of Stein, has studied generalized Bayes estimators which are members of a point mass at zero and a prior similar to the harmonic prior. He finds a subclass which is minimax and admissible but is unable to show that any in his class with positive point mass at zero dominate the James-Stein estimator. The results in this paper show that a subclass of Maruyama's procedures including the class that Stein conjectured might contain members dominating the James-Stein estimator cannot dominate the James-Stein estimator. We also show that under reasonable conditions, the “constant” in shrinkage factor must approachp-2 for domination to hold.  相似文献   

2.
Bayes estimation of the mean of a variance mixture of multivariate normal distributions is considered under sum of squared errors loss. We find broad class of priors (also in the variance mixture of normal class) which result in proper and generalized Bayes minimax estimators. This paper extends the results of Strawderman [Minimax estimation of location parameters for certain spherically symmetric distribution, J. Multivariate Anal. 4 (1974) 255-264] in a manner similar to that of Maruyama [Admissible minimax estimators of a mean vector of scale mixtures of multivariate normal distribution, J. Multivariate Anal. 21 (2003) 69-78] but somewhat more in the spirit of Fourdrinier et al. [On the construction of bayes minimax estimators, Ann. Statist. 26 (1998) 660-671] for the normal case, in the sense that we construct classes of priors giving rise to minimaxity. A feature of this paper is that in certain cases we are able to construct proper Bayes minimax estimators satisfying the properties and bounds in Strawderman [Minimax estimation of location parameters for certain spherically symmetric distribution, J. Multivariate Anal. 4 (1974) 255-264]. We also give some insight into why Strawderman's results do or do not seem to apply in certain cases. In cases where it does not apply, we give minimax estimators based on Berger's [Minimax estimation of location vectors for a wide class of densities, Ann. Statist. 3 (1975) 1318-1328] results. A main condition for minimaxity is that the mixing distributions of the sampling distribution and the prior distribution satisfy a monotone likelihood ratio property with respect to a scale parameter.  相似文献   

3.
This paper obtains conditions for minimaxity of hierarchical Bayes estimators in the estimation of a mean vector of a multivariate normal distribution. Hierarchical prior distributions with three types of second stage priors are treated. Conditions for admissibility and inadmissibility of the hierarchical Bayes estimators are also derived using the arguments in Berger and Strawderman [Choice of hierarchical priors: admissibility in estimation of normal means, Ann. Statist. 24 (1996) 931-951]. Combining these results yields admissible and minimax hierarchical Bayes estimators.  相似文献   

4.
For a vast array of general spherically symmetric location-scale models with a residual vector, we consider estimating the (univariate) location parameter when it is lower bounded. We provide conditions for estimators to dominate the benchmark minimax MRE estimator, and thus be minimax under scale invariant loss. These minimax estimators include the generalized Bayes estimator with respect to the truncation of the common non-informative prior onto the restricted parameter space for normal models under general convex symmetric loss, as well as non-normal models under scale invariant \(L^p\) loss with \(p>0\) . We cover many other situations when the loss is asymmetric, and where other generalized Bayes estimators, obtained with different powers of the scale parameter in the prior measure, are proven to be minimax. We rely on various novel representations, sharp sign change analyses, as well as capitalize on Kubokawa’s integral expression for risk difference technique. Several properties such as robustness of the generalized Bayes estimators under various loss functions are obtained.  相似文献   

5.
We consider estimation of loss for generalized Bayes or pseudo-Bayes estimators of a multivariate normal mean vector, θ. In 3 and higher dimensions, the MLEX is UMVUE and minimax but is inadmissible. It is dominated by the James-Stein estimator and by many others. Johnstone (1988, On inadmissibility of some unbiased estimates of loss,Statistical Decision Theory and Related Topics, IV (eds. S. S. Gupta and J. O. Berger), Vol. 1, 361–379, Springer, New York) considered the estimation of loss for the usual estimatorX and the James-Stein estimator. He found improvements over the Stein unbiased estimator of risk. In this paper, for a generalized Bayes point estimator of θ, we compare generalized Bayes estimators to unbiased estimators of loss. We find, somewhat surprisingly, that the unbiased estimator often dominates the corresponding generalized Bayes estimator of loss for priors which give minimax estimators in the original point estimation problem. In particular, we give a class of priors for which the generalized Bayes estimator of θ is admissible and minimax but for which the unbiased estimator of loss dominates the generalized Bayes estimator of loss. We also give a general inadmissibility result for a generalized Bayes estimator of loss. Research supported by NSF Grant DMS-97-04524.  相似文献   

6.
7.
We consider estimation of a multivariate normal mean vector under sum of squared error loss.We propose a new class of minimax admissible estimator which are generalized Bayes with respect to a prior distribution which is a mixture of a point prior at the origin and a continuous hierarchical type prior. We also study conditions under which these generalized Bayes minimax estimators improve on the James–Stein estimator and on the positive-part James–Stein estimator.  相似文献   

8.
We consider two problems: (1) estimate a normal mean under a general divergence loss introduced in [S. Amari, Differential geometry of curved exponential families — curvatures and information loss, Ann. Statist. 10 (1982) 357-387] and [N. Cressie, T.R.C. Read, Multinomial goodness-of-fit tests, J. Roy. Statist. Soc. Ser. B. 46 (1984) 440-464] and (2) find a predictive density of a new observation drawn independently of observations sampled from a normal distribution with the same mean but possibly with a different variance under the same loss. The general divergence loss includes as special cases both the Kullback-Leibler and Bhattacharyya-Hellinger losses. The sample mean, which is a Bayes estimator of the population mean under this loss and the improper uniform prior, is shown to be minimax in any arbitrary dimension. A counterpart of this result for predictive density is also proved in any arbitrary dimension. The admissibility of these rules holds in one dimension, and we conjecture that the result is true in two dimensions as well. However, the general Baranchick [A.J. Baranchick, a family of minimax estimators of the mean of a multivariate normal distribution, Ann. Math. Statist. 41 (1970) 642-645] class of estimators, which includes the James-Stein estimator and the Strawderman [W.E. Strawderman, Proper Bayes minimax estimators of the multivariate normal mean, Ann. Math. Statist. 42 (1971) 385-388] class of estimators, dominates the sample mean in three or higher dimensions for the estimation problem. An analogous class of predictive densities is defined and any member of this class is shown to dominate the predictive density corresponding to a uniform prior in three or higher dimensions. For the prediction problem, in the special case of Kullback-Leibler loss, our results complement to a certain extent some of the recent important work of Komaki [F. Komaki, A shrinkage predictive distribution for multivariate normal observations, Biometrika 88 (2001) 859-864] and George, Liang and Xu [E.I. George, F. Liang, X. Xu, Improved minimax predictive densities under Kullbak-Leibler loss, Ann. Statist. 34 (2006) 78-92]. While our proposed approach produces a general class of predictive densities (not necessarily Bayes, but not excluding Bayes predictors) dominating the predictive density under a uniform prior. We show also that various modifications of the James-Stein estimator continue to dominate the sample mean, and by the duality of estimation and predictive density results which we will show, similar results continue to hold for the prediction problem as well.  相似文献   

9.
In the linear regression model with ellipsoidal parameter constraints, the problem of estimating the unknown parameter vector is studied. A well-described subclass of Bayes linear estimators is proposed in the paper. It is shown that for each member of this subclass, a generalized quadratic risk function exists so that the estimator is minimax. Moreover, some of the proposed Bayes linear estimators are admissible with respect to all possible generalized quadratic risks. Also, a necessary and sufficient condition is given to ensure that the considered Bayes linear estimator improves the least squares estimator over the whole ellipsoid whatever generalized risk function is chosen.  相似文献   

10.
This paper treats the problem of estimating positive parameters restricted to a polyhedral convex cone which includes typical order restrictions, such as simple order, tree order and umbrella order restrictions. In this paper, two methods are used to show the improvement of order-preserving estimators over crude non-order-preserving estimators without any assumption on underlying distributions. One is to use Fenchel’s duality theorem, and then the superiority of the isotonic regression estimator is established under the general restriction to polyhedral convex cones. The use of the Abel identity is the other method, and we can derive a class of improved estimators which includes order-statistics-based estimators in the typical order restrictions. When the underlying distributions are scale families, the unbiased estimators and their order-restricted estimators are shown to be minimax. The minimaxity of the restrictedly generalized Bayes estimator against the prior over the restricted space is also demonstrated in the two dimensional case. Finally, some examples and multivariate extensions are given.  相似文献   

11.
For ap-variate normal mean with known variances, the model proposed by Zellner (1986,J. Amer. Statist. Assoc.,81, 446–451) is discussed in a slightly different framework. A generalized Bayes estimate is derived from a three-stage Bayes point of view under the asymmetric loss function, and the admissibility of such estimators is proved.  相似文献   

12.
Let XN(θ,1), where θ ϵ [−m, m], for some m > 0, and consider the problem of estimating θ with quadratic loss. We show that the Bayes estimator δm, corresponding to the uniform prior on [−m, m], dominates δ0 (x) = x on [−m, m] and it also dominates the MLE over a large part of the parameter interval. We further offer numerical evidence to suggest that δm has quite satisfactory risk performance when compared with the minimax estimators proposed by Casella and Strawderman (1981) and the estimators proposed by Bickel (1981).  相似文献   

13.
This article investigates linear minimax estimators of regression coefficient in a linear model with an assumption that the underlying distribution is a normal one with a nonnegative definite covariance matrix under a balanced loss function. Some linear minimax estimators of regression coefficient in the class of all estimators are obtained. The result shows that the linear minimax estimators are unique under some conditions.  相似文献   

14.
This paper treats the problem of estimating the restricted means of normal distributions with a known variance, where the means are restricted to a polyhedral convex cone which includes various restrictions such as positive orthant, simple order, tree order and umbrella order restrictions. In the context of the simultaneous estimation of the restricted means, it is of great interest to investigate decision-theoretic properties of the generalized Bayes estimator against the uniform prior distribution over the polyhedral convex cone. In this paper, the generalized Bayes estimator is shown to be minimax. It is also proved that it is admissible in the one- or two-dimensional case, but is improved on by a shrinkage estimator in the three- or more-dimensional case. This means that the so-called Stein phenomenon on the minimax generalized Bayes estimator can be extended to the case where the means are restricted to the polyhedral convex cone. The risk behaviors of the estimators are investigated through Monte Carlo simulation, and it is revealed that the shrinkage estimator has a substantial risk reduction.  相似文献   

15.
In this paper we consider the problem of estimating the matrix of regression coefficients in a multivariate linear regression model in which the design matrix is near singular. Under the assumption of normality, we propose empirical Bayes ridge regression estimators with three types of shrinkage functions, that is, scalar, componentwise and matricial shrinkage. These proposed estimators are proved to be uniformly better than the least squares estimator, that is, minimax in terms of risk under the Strawderman's loss function. Through simulation and empirical studies, they are also shown to be useful in the multicollinearity cases.  相似文献   

16.
The problem of estimating the common regression coefficients is addressed in this paper for two regression equations with possibly different error variances. The feasible generalized least squares (FGLS) estimators have been believed to be admissible within the class of unbiased estimators. It is, nevertheless, established that the FGLS estimators are inadmissible in light of minimizing the covariance matrices if the dimension of the common regression coefficients is greater than or equal to three. Double shrinkage unbiased estimators are proposed as possible candidates of improved procedures.  相似文献   

17.
Motivated by problems in molecular biosciences wherein the evaluation of entropy of a molecular system is important for understanding its thermodynamic properties, we consider the efficient estimation of entropy of a multivariate normal distribution having unknown mean vector and covariance matrix. Based on a random sample, we discuss the problem of estimating the entropy under the quadratic loss function. The best affine equivariant estimator is obtained and, interestingly, it also turns out to be an unbiased estimator and a generalized Bayes estimator. It is established that the best affine equivariant estimator is admissible in the class of estimators that depend on the determinant of the sample covariance matrix alone. The risk improvements of the best affine equivariant estimator over the maximum likelihood estimator (an estimator commonly used in molecular sciences) are obtained numerically and are found to be substantial in higher dimensions, which is commonly the case for atomic coordinates in macromolecules such as proteins. We further establish that even the best affine equivariant estimator is inadmissible and obtain Stein-type and Brewster–Zidek-type estimators dominating it. The Brewster–Zidek-type estimator is shown to be generalized Bayes.  相似文献   

18.
双指数分布位置参数的经验Bayes估计问题   总被引:2,自引:0,他引:2  
丁晓  韦来生 《数学杂志》2005,25(4):413-420
本文在平方损失下导出了双指数分布位置参数的Bayes估计,利用非参数方法构造了位置参数的经验Bayes(EB)估计.在适当的条件下,获得了EB估计的收敛速度.最后,给出了一个例子说明适合定理条件的先验分布是存在的.  相似文献   

19.
We consider the problem of threshold estimation for autoregressive time series with a ??space switching?? in the situation when the regression is nonlinear and the innovations have a smooth, possibly non-Gaussian, probability density. Assuming that the unknown threshold parameter is sampled from a continuous positive prior density, we find the asymptotic distribution of the Bayes estimator. As is usual in the singular estimation problems, the sequence of Bayes estimators is asymptotically efficient, attaining the minimax risk lower bound.  相似文献   

20.
Bayes estimation of the mean of a multivariate normal distribution is considered under quadratic loss. We show that, when a variance mixture of normal distributions is used as a prior, superharmonicity of the square root of the marginal density provides a viable method for constructing Bayes minimax estimators. Examples illustrate the theory. In particular, we show that a scaled multivariate Student-t prior yields a proper Bayes minimax estimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号