首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate here the power and flexibility of free‐solution conjugate electrophoresis (FSCE) as a method of separating DNA fragments by electrophoresis with no sieving polymer network. Previous work introduced the coupling of FSCE with ligase detection reaction (LDR) to detect point mutations, even at low abundance compared to the wild‐type DNA. Here, four large drag‐tags are used to achieve free‐solution electrophoretic separation of 19 LDR products ranging in size from 42 to 66 nt that correspond to mutations in the K‐ras oncogene. LDR‐FSCE enabled electrophoretic resolution of these 19 LDR‐FSCE products by CE in 13.5 min (E = 310 V/cm) and by microchip electrophoresis in 140 s (E = 350 V/cm). The power of FSCE is demonstrated in the unique characteristic of free‐solution separations where the separation resolution is constant no matter the electric field strength. By microchip electrophoresis, the electric field was increased to the maximum of the power supply (E = 700 V/cm), and the 19 LDR‐FSCE products were separated in less than 70 s with almost identical resolution to the separation at E = 350 V/cm. These results will aid the goal of screening K‐ras mutations on integrated “sample‐in/answer‐out” devices with amplification, LDR, and detection all on one platform.  相似文献   

2.
Huang H  Xu F  Dai Z  Lin B 《Electrophoresis》2005,26(11):2254-2260
A microchip for integrated isotachophoretic (ITP) preconcentration with gel electrophoretic (GE) separation to decrease the detectable concentration of sodium dodecyl sulfate (SDS)-proteins was developed. Each channel of the chip was designed with a long sample injection channel to increase the sample loading and allow stacking the sample into a narrow zone using discontinuous ITP buffers. The pre-concentrated sample was separated in GE mode in sieving polymer solutions. All the analysis steps including injection, preconcentration, and separation of the ITP-GE process were performed continuously, controlled by a high-voltage power source with sequential voltage switching between the analysis steps. Without deteriorating the peak resolution, four SDS-protein analyses with integrated ITP-GE system resulted in a decreased detectable concentration of approximately 40-fold compared to the GE mode only. A good calibration curve for molecular weights of SDS-proteins indicated that the integrated ITP-GE system can be used for qualitative analysis of unknown protein samples.  相似文献   

3.
A multi‐channel microchip electrophoresis using a programmed step electric field strength (PSEFS) method was investigated for fast parallel detection of feline panleukopenia virus (FPV) DNA. An expanded laser beam, a 10× objective lens, and a charge‐coupled device camera were used to simultaneously detect the separations in three parallel channels using laser‐induced fluorescence detection. The parallel separations of a 100‐bp DNA ladder were demonstrated on the system using a sieving gel matrix of 0.5% poly(ethylene oxide) (Mr = 8 000 000) in the individual channels. In addition, the PSEFS method was also applied for faster DNA separation without loss of resolving power. A DNA size marker, FPV DNA sample, and a negative control were simultaneously analyzed with single‐run and one‐step detection. The FPV DNA was clearly distinguished within 30 s, which was more than 100 times faster than with conventional slab gel electrophoresis. The proposed multi‐channel microchip electrophoresis with PSEFS was demonstrated to be a simple and powerful diagnostic method to analyze multiple disease‐related DNA fragments in parallel with high speed, throughput, and accuracy.  相似文献   

4.
A novel microsystem device in poly(dimethylsiloxane) (PDMS) for MS detection is presented. The microchip integrates sample injection, capillary electrophoretic separation, and electrospray emitter in a single substrate, and all modules are fabricated in the PDMS bulk material. The injection and separation flow is driven electrokinetically and the total amount of external equipment needed consists of a three-channel high-voltage power supply. The instant switching between sample injection and separation is performed through a series of low-cost relays, limiting the separation field strength to a maximum of 270 V/cm. We show that this set-up is sufficient to accomplish electrospray MS analysis and, to a moderate extent, microchip separation of standard peptides. A new method of instant in-channel oxidation makes it possible to overcome the problem of irreversibly bonded PDMS channels that have recovered their hydrophobic properties over time. The fast method turns the channel surfaces hydrophilic and less prone to nonspecific analyte adsorption, yielding better separation efficiencies and higher apparent peptide mobilities.  相似文献   

5.
芯片毛细管电泳-安培检测系统   总被引:2,自引:0,他引:2  
由于安培检测具有的高灵敏度、低成本、低能耗、易集成化便携化、与微加工技术匹配等特点,芯片毛细管电泳-安培检测系统(μCE-AD)的研究近年来得到人们广泛的关注。本文结合本课题组的研究工作,对近年来μCE-AD的研究进展进行评述;重点讨论了近年来在芯片的设计、集成化电极的制备、消除分离电压的干扰等方面的进展;同时介绍了利用分离电场拓展检测范围、阵列电极和阵列通道、化学修饰电极的应用、新型进样技术和试样预处理等方面的新成就;最后展望了未来μCE-AD的发展趋势。  相似文献   

6.
Wang Y  Chen H  He Q  Soper SA 《Electrophoresis》2008,29(9):1881-1888
A fully integrated polycarbonate (PC) microchip for CE with end-channel electrochemical detection operated in an amperometric mode (CE-ED) has been developed. The on-chip integrated three-electrode system consisted of a gold working electrode, an Ag/AgCl reference electrode and a platinum counter electrode, which was fabricated by photo-directed electroless plating combined with electroplating. The working electrode was positioned against the separation channel exit to reduce post-channel band broadening. The electrophoresis high-voltage (HV) interference with the amperometric detection was assessed with respect to detection noise and potential shifts at various working-to-reference electrode spacing. It was observed that the electrophoresis HV interference caused by positioning the working electrode against the channel exit could be diminished by using an on-chip integrated reference electrode that was positioned in close proximity (100 microm) to the working electrode. The CE-ED microchip was demonstrated for the separation of model analytes, including dopamine (DA) and catechol (CA). Detection limits of 132 and 164 nM were achieved for DA and CA, respectively, and a theoretical plate number of 2.5x10(4)/m was obtained for DA. Relative standard deviations in peak heights observed for five runs of a standard solution containing the two analytes (0.1 mM for each) were 1.2 and 3.1% for DA and CA, respectively. The chip could be continuously used for more than 8 h without significant deterioration in analytical performance.  相似文献   

7.
Narrow peaks are important to high‐resolution and high‐speed separation of DNA fragments by capillary electrophoresis and microchip capillary electrophoresis. Detection cell length is one of the broadening factors, which is often ignored in experiments. However, is it always safe to neglect detection cell length under any condition? To answer this question, we investigated the influence of detection cell length by simulation and experiments. A parameter named as detection cell length ratio was proposed to directly compare the detection cell length and the spatial length of sample band. Electrophoretic peaks generated by various detection cell length ratios were analyzed. A simple rule to evaluate the peak broadening due to detection cell length was obtained. The current states of the detection cell length of detection system and their reliabilities in capillary electrophoresis and microchip capillary electrophoresis were analyzed. Microchip capillary electrophoresis detection with an ultra‐small detection cell length of 0.36 μm was easily achieved by using an image sensor.  相似文献   

8.
Conventional microchip applications involving capillary electrophoresis (CE) typically inject a sample along one channel and use an intersection of two channels to define the sample plug--the portion of sample to be analysed along a second channel. In contrast to this method of zone separation, frontal analysis proceeds by injecting sample continuously into a single channel or column. Frontal analysis is more common in macroscopic procedures but there are benefits in sensitivity and device density to its application to electrophoresis on microchips. This work compares conventional microchip zone analysis with frontal analysis in the separation of PCR products. Although we detect on the order of 5000 fluorophores with a compact instrument using the zone separation CE method, we found a several-fold increase in the effective signal-to-noise ratio by using a frontal analysis method. By removing the need for additional channels and reservoirs the frontal method would allow device densities to be significantly increased, potentially improving the cost-effectiveness of microchip analyses in applications such as medical diagnostics.  相似文献   

9.
Lin YC  Wu WM  Fan CS 《Lab on a chip》2004,4(1):60-64
The paper proposed novel designs to pinch the transverse diffusion of the sample in the injection mode using microelectrodes to generate the potential difference at the channel intersection in the capillary electrophoresis (CE) microchip. A pair of microelectrodes was used to conduct the injection channel and the separation channel, which directly provided the potential to pinch the sample without using a power supply. These new designs of the CE microchip simplify the electric circuitry and improve performance. Simulations were performed using the CFD-ACE[trade mark sign] software. The mechanisms of diffusion and electrophoresis were employed in the numerical simulation. The injection and separation processes of the sample were simulated and the parameters of the present design were investigated numerically.  相似文献   

10.
A one‐step etching method was developed to fabricate glass free‐flow electrophoresis microchips with a rectangle separation microchamber (42 mm‐long, 23 mm‐wide and 28 μm‐deep), in which two glass bridges (0.5 mm‐wide) were made simultaneously to prevent bubbles formed by electrolysis near the Pt electrode from entering the separation chamber. By microchip free‐flow zone electrophoresis, with 200 V voltage applied, the baseline separation of three FITC labeled proteins, ribonuclease B, myoglobin and β‐lactoglobulin, was achieved, with resolution over 1.78. Furthermore, with 2.5 mM Na2SO4 added into the electrode buffer to form higher electrical field strength across separation microchamber than electrode compartments, similar resolution of samples was achieved with the applied voltage decreased to 75 V, which could obviously decrease Joule heat during continuous separation. All these results demonstrate that the free‐flow electrophoresis microchip fabricated by one‐step etching method is suitable for the continuous separation of proteins, which might become an effective pre‐fractionation method for proteome study.  相似文献   

11.
A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was approximately 27.4 degrees compared with approximately 66.3 degrees for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13x10(-4) cm2 V(-1) s(-1) for the native-PMMA channel to 4.86x10(-4) cm2 V(-1) s(-1) for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74,882.3 m(-1) compared with 14,730.5 m(-1) for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.  相似文献   

12.
Tanyanyiwa J  Hauser PC 《Electrophoresis》2004,25(17):3010-3016
The extension of contactless conductivity detection in electrophoresis to the determination of basic drugs is demonstrated using beta-adrenergic blocking agents (beta-blockers) and other physiologically active amines as examples. The high-voltage approach to conductivity detection was employed for conventional capillaries as well as microchip devices. Acidic buffers were used in all cases. A buffer consisting of 100 mM acetic acid and 1 mM histidine was deemed most optimal for the separation of six beta-blockers and best results for the analysis of the other amines were achieved with a 20 mM lactic acid buffer at low pH-value. The detection limits ranged from 0.06 to 5 microM. To demonstrate potential practical applications, a main component assay was conducted for three pharmaceutical formulations. On-chip, five pharmaceutical amines could be baseline-resolved in a 8 cm long microchannel in 90 s, albeit a reduced sensitivity and peak capacity compared to conventional capillary electrophoresis.  相似文献   

13.
A multi-T microchip for integrated field amplified sample stacking (FASS) with CE separation to increase the chip-based capillary electrophoresis (chip-based CE) sensitivity was developed. Volumetrically defined large sample plug was formed in one step within 5s by the negative pressure in headspace of the two sealed sample waste reservoirs produced using a syringe pump equipped with a 3-way valve. Stacking and separation can proceed only by switching the 3-way valve to release the vacuum in headspace of the two sample waste reservoirs. This approach considerably simplified the operations and the equipments for FASS in chip-based CE systems. Migration time precisions of 3.3% and 1.3% RSD for rhodamine123 (Rh123) and fluorescien sodium salt (Flu) in the separation of a mixture of Flu and Rh123 were obtained for nine consecutive determinations with peak height precisions of 4.8% and 3.4% RSD, respectively. Compared with the chip-based CE on the cross microchip, the sensitivity for analysis of FlTC, FITC-labeled valine (Val) and Alanine (Ala) increased 55-, 41- and 43-fold, respectively.  相似文献   

14.
Microchip capillary electrophoresis/electrochemistry   总被引:8,自引:0,他引:8  
Microfabricated fluidic devices have generated considerable interest over the past ten years due to the fact that sample preparation, injection, separation, derivatization, and detection can be integrated into one miniaturized device. This review reports progress in the development of microfabricated analytical systems based on microchip capillary electrophoresis (CE) with electrochemical (EC) detection. Electrochemical detection has several advantages for use with microchip electrophoresis systems, for example, ease of miniaturization, sensitivity, and selectivity. In this review, the basic components necessary for microchip CEEC are described, including several examples of different detector configurations. Lastly, details of the application of this technique to the determination of catechols and phenols, amino acids, peptides, carbohydrates, nitroaromatics, polymerase chain reaction (PCR) products, organophosphates, and hydrazines are described.  相似文献   

15.
Jiang L  Lu Y  Dai Z  Xie M  Lin B 《Lab on a chip》2005,5(9):930-934
This paper presents the development of a mini-electrochemical detector for microchip electrophoresis. The small size (3.6 x 5.0 cm2, W x L) of the detector is compatible with the dimension of the microchip. The use of universal serial bus (USB) ports facilitates installation and use of the detector, miniaturizes the detector, and makes it ideal for lab-on-a-chip applications. A fixed 10 M ohm feedback resistance was chosen to convert current of the working electrode to voltage with second gain of 1, 2, 4, 8, 16, 32, 64 and 128 for small signal detection instead of adopting selectable feedback resistance. Special attention has been paid to the power support circuitry and printed circuit board (PCB) design in order to obtain good performance in such a miniature size. The working electrode potential could be varied over a range of +/-2.5 V with a resolution of 0.01 mV. The detection current ranges from -0.3 x 10(-7) A to 2.5 x 10(-7) A and the noise is lower than 1 pA. The analytical performance of the new system was demonstrated by the detection of epinephrine using an integrated PDMS/glass microchip with detection limit of 2.1 microM (S/N = 3).  相似文献   

16.
刘玉兰  陈雅莉  肖小华  夏凌  李攻科 《色谱》2020,38(10):1197-1205
样品前处理能将待测物从复杂基质中预先分离富集出来,以提高分析方法的灵敏度、选择性和准确性,是复杂样品分析的关键步骤。样品前处理是一个非自发的、从无序到有序的熵减过程,不仅费时费力,还极易引起误差。向体系输入能量和降低体系熵值可以增强分离富集效果,加快样品制备过程。将电场引入在线样品前处理,既能向体系做功,又能驱动样品定向迁移,使前处理的熵减过程快速顺利进行,是快速样品制备的有效途径。基于电驱动的在线分离富集技术综合了多种加速策略:(1)以电场形式向体系输入能量,加速传质和传热过程;(2)采用电渗流、电泳等电驱动定向流实现样品在分离、富集、检测各步骤之间的定向迁移,保证样品前处理与检测顺利进行;(3)利用在线联用技术集成样品前处理与分析检测各步骤,从而提高自动化程度,减少人为误差;(4)通过微型化装置或微萃取方法提高样品制备效率,缩短样品制备时间。该文总结了近10年与基于电驱动的在线快速分离富集技术相关的90多篇文献,综述了该技术领域的研究进展,探讨了电驱动毛细管在线快速分离富集技术、电驱动芯片在线快速分离富集技术和电驱动膜萃取在线分离富集技术各自的优势和潜力,并展望了该类技术的发展与应用趋势。  相似文献   

17.
Hirokawa T  Takayama Y  Arai A  Xu Z 《Electrophoresis》2008,29(9):1829-1835
Aiming to achieve high-performance analysis of DNA fragments using microchip electrophoresis, we developed a novel sample injection method, which was given the name of floating electrokinetic supercharging (FEKS). In the method, electrokinetic injection (EKI) and ITP preconcentration of samples was performed in a separation channel, connecting two reservoir ports (P3 and P4) on a cross-geometry microchip. At these two stages, side channels, crossing the separation channel, and their ports (P1 and P2) were electrically floated. After the ITP-stacked zones passed the cross-part, they were eluted for detection by using leading ions from P1 and P2 that enabled electrophoresis mode changing rapidly from ITP to zone electrophoresis (ZE). Possible sample leakage at the cross-part toward P1 and P2 was studied in detail on the basis of computer simulation using a CFD-ACE+ software and real experiments, through which it was validated that the analyte recovery to the separation channel was almost complete. The FEKS method successfully contributed to higher resolution and shorter analysis time of DNA fragments on the cross-microchip owing to more rapid switching from ITP status to ZE separation in comparison with our previous EKS procedure realized on a single-channel microchip. Without any degradation of resolution, the achieved LODs were on average ten times better than using conventional pinched injection.  相似文献   

18.
The design, construction and operation of a simple, inexpensive and compact high voltage power supply (HVPS) for use in conjunction with a simple cross capillary electrophoresis microchip is presented. The microchip HVPS utilizes a single high voltage power supply (15 kV), a voltage-divider network, to give the voltages necessary to operate a gated injection valve, and two high voltage relays for switching between the open and closed gate sequences of the injection. In order to accommodate the application of different simple cross microchip dimensions, a set of equations for defining the resistor network and ensuring proper gate performance are presented.  相似文献   

19.
1-Phenyl-3-methyl-5-pyrazolone (PMP) derivatives of monosaccharides were analyzed by electrophoresis on a quartz microchip with whole-channel UV detection. Rapid separation of PMP derivatives of aldopentoses was achieved by plain-zone electrophoresis in a neutral phosphate buffer with the height equivalent to a theoretical plate at the micrometer level. Zone electrophoresis as borate complexes was also successful for the separation of PMP derivatives of a few aldoses, which were separated within 1 min. Separation by microchip electrophoresis was compared to that by capillary electrophoresis, and the difference was discussed in terms of column efficiency and sample column capacity.  相似文献   

20.
Fundamental understanding of the impact of reservoir potentials on the analyte behavior on the microfluidic chips is an important issue in microchip electrophoresis (MCE) for suitable injection and separation of analytes, since the applied potentials may significantly affect the shape of sample plug, sample leakage from the injection channel to the separation channel, injected sample amount, and separation efficiency. This study addressed this issue for the case of a conventional cross-geometry microchip with four reservoirs using computer simulations, the results of which were verified by the analysis of DNA fragments. For the microchip with a definite structure and migration distance, the injected sample amount was shown to be the vital parameter for improving the limit of detection and resolution. During injection, the shape of the sample plug could be adjusted by varying the reservoir potentials. It was demonstrated that a "magnified injection" (applying high voltage on the three reservoirs to the sample reservoir) is useful to enhance the detection sensitivity depending on the analyte composition, although such injection was previously avoided because of introducing too large amounts of the analyte in comparison with two established modes, floating and pinched injection. Optimal magnified injection was proved to improve the sensitivity for about 4 times over that of pinched injection for the analysis of DNA step ladders using microchip gel electrophoresis (MCGE). Sample leakage of DNA fragments could be suppressed by applying a high positive voltage on injection channel during separation, but the voltage degraded the injected amount and resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号