首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photophysical properties of all-trans-retinal (RAL) have been extensively studied because of the importance of the retinoids in the visual process. However, little information is available regarding the participation of RAL in photochemical transformations such as photoxidation. RAL is one of several native chromophores that have been suggested to act as photosensitizers of damage in the human retina, and this damage would likely occur through oxidative pathways. Time-resolved and steady state techniques have been used to examine the photoreactivity of RAL toward several suitable substrates. The lifetime of the RAL triplet excited state is observed to decrease with increasing concentration of the well-known electron and hydrogen atom donors, 2,3,5,6-tetramethyl-1,4-phenylenediamine (DAD), hydroquinone (HQ), methylhydroquinone (MHQ), 2,3-dimethylhydroquinone (DMHQ) and trimethylhydroquinone (TMHQ), although the bimolecular rate constants for the reaction are much less than that of diffusion controlled (2.9 x 10(7) M-1 s-1, 1.2 x 10(5) M-1 s-1, 1.2 x 10(5) M-1 s-1, 1.5 x 10(5) M-1 s-1 and 1.6 x 10(6) M-1 s-1, for DAD, HQ, MHQ, DMHQ and TMHQ, respectively). In the presence of the donors, new absorptions grow concomitant with the decay of the triplet excited state, and for DAD and TMHQ, the observed spectra are similar to the spectra of p-phenylenediamine and TMHQ radicals. Irradiation of RAL in argon-saturated methanol results in fairly efficient photobleaching of RAL and in the formation of two new compounds having absorption spectra that are shifted below 300 nm. Irradiation of RAL in argon-saturated acetonitrile also results in photobleaching of RAL, but the reaction proceeds at a slower rate.  相似文献   

2.
喹喔啉衍生物与缺电子烯烃的激光闪光光解研究   总被引:1,自引:0,他引:1  
潘洋  盛振宇  李江  戴静华  储高升  俞书勤 《化学学报》2004,62(14):1293-1298,J002
利用时间分辨激光诱导瞬态吸收光谱装置,以一台Nd:YAG激光器四倍频后的266nm激光作为激发光源,详细研究了两种喹喔啉衍生物激发三重态在乙腈体系中的动力学过程,得到激光脉冲作用后不同时间的瞬态吸收光谱及激发三重态自猝灭反应动力学常数.并以五种缺电子烯烃作为猝灭剂,得到了基态缺电子烯烃对喹喔啉衍生物激发三重态的猝灭反应动力学常数,阐明了猝灭反应机理.  相似文献   

3.
The 355 nm laser flash photolysis of nalidixic acid at pH 9.2 leads to the formation of the nalidixate anion triplet state (absorption lambda max = 620 nm; 5700 less than or equal to epsilon T less than or equal to 9000 M-1cm-1; 0.6 less than or equal to phi T less than or equal to 1). The first order triplet state decay (kT = 7.7 x 10(3) s-1) is accompanied by a diffusion controlled triplet-triplet annihilation. Oxygen efficiently quenches the triplet state (k = 3.2 x 10(9) M-1s-1). The nalidixate radical dianion (absorption lambda max = 650 nm; epsilon = 3000 M-1cm-1) is produced by the diffusion controlled reductive quenching of the triplet state by tryptophan and tyrosine. The superoxide anion (O2-.) is produced by diffusion controlled reaction of the radical dianion with oxygen. The O2-. is characterized by its reactions with ferricytochrome c and superoxide dismutase. The physiological form of nalidixic acid is thus a good Type I and Type II photosensitizer.  相似文献   

4.
Laser flash photolysis of 7-(piperazin-1-yl) fluoroquinolones leads to the formation of a triplet excited state (3A*) at the end of the pulse (lambdamax 520, 610, and 620 nm for enoxacin, ciprofloxacin, and norfloxacin, respectively). Phosphate and bicarbonate buffers react with 3A* to form a secondary triplet (3B*, reaction rates (0.8-9.9) x 108 M-1 s-1), whose T-T absorption is red-shifted (lambdamax 670 nm for enoxacin, 700 nm for ciprofloxacin and norfloxacin). The formation of a secondary triplet is not a common process and disagrees with previous work suggesting that electron transfer occurs between phosphate buffer and the primary triplet excited state with the formation of the anion radical of the fluoroquinolone (FQ.-). We have shown that the FQ.- transient absorption spectrum is quite distinct from that of 3B*. The photophysical characteristics of 3B* have been determined by energy transfer to naproxen, and it has been found that its energy is lower than that of 3A*.  相似文献   

5.
The triplet-excited state of benzophenone and the singlet-excited state of 2,3-diazabicyclo[2.2.2]oct-2-ene (Fluorazophore-P) have been employed as kinetic probes to obtain information on the antioxidant activity of the skin and eye pigment melanin and its biogenetic precursors 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA). The excited states were generated by the laser-flash photolysis technique and their reaction kinetics was examined by time-resolved transient absorption or fluorescence spectroscopy, respectively. The reaction between triplet benzophenone and DHI produced with unit efficiency the corresponding 6O-centered semiquinone radical, which was characterized by its characteristic transient absorption. The quenching rate constants for DHI (3.1-8.4 x 10(9) M-1 s-1) and DHICA (3.3-5.5 x 10(9) M-1 s-1) were near the diffusion-controlled limit, indicating excellent antioxidant properties. Kinetic solvent effects were observed. The reactivity of synthetic melanin, assessed through the quenching rate constant of Fluorazophore-P and normalized to the number of monomer units, was more than one order of magnitude lower (2.7 x 10(8) M-1 s-1) than that of its precursors. The trend of the quenching rate constants, i.e. DHI > DHICA approximately alpha-tocopherol > melanin, along with the preferential solubility of DHICA in aqueous environments, serves to account for several experimental results from biochemical studies on the inhibition of lipid peroxidation by these natural antioxidants.  相似文献   

6.
A derivative of all-trans-retinal (RAL) and ethanolamine, A2-E, is the main fluorescent component of human retinal lipofuscin. The accumulation of lipofuscin has been correlated with exposure to ambient radiation and loss of photoreceptors. A possible precursor to A2-E is the imine formed from RAL and ethanolamine. This compound, (E,E,E,E)-2-[9-(2-hydroxyethyl)imino-3,7-dimethyl-1,3,5,7- decatrien-1-yl]-1,3,3-trimethylcyclohexene (HIDD), has been synthesized and structurally characterized. The photophysical and photochemical properties of HIDD and its protonated form, HIDD-H+, have been investigated using steady-state and time-resolved methods. Both HIDD and HIDD-H+ are weakly fluorescent, and the fluorescence lifetime and quantum yield for HIDD are ca 0.6 ns and 4.0 +/- 0.5 x 10(-4), respectively. HIDD forms a triplet excited state on direct excitation that decays with kd = 3.4 x 10(4) s-1. The extinction coefficient and quantum yield of intersystem crossing for the HIDD triplet are measured as 7.6 +/- 1.3 x 10(4) M-1 cm-1 and 0.055 +/- 0.006, respectively. The triplet excited state of HIDD-H+ can be sensitized by triplet energy transfer and has a decay rate constant of 1.6 x 10(4) s-1. The lifetime of the HIDD triplet excited state is observed to decrease with increasing concentration of the well-known electron or hydrogen atom donors, 2,3,5,6-tetramethyl-1,4-phenylenediamine and 2,3,5-trimethylhydroquinone, and the bimolecular rate constants for these reactions are approximately 5.4 x 10(6) M-1 s-1 and 1.7 x 10(8) M-1 s-1, respectively. These types of reactions may model photooxidative mechanisms of damage in the retina.  相似文献   

7.
Meso-tetra(hydroxyphenyl)chlorin (m-THPC) is a new photosensitizer developed for potential use in photodynamic therapy (PDT) for cancer treatment. In PDT, the accepted mechanism of tumor destruction involves the formation of excited singlet oxygen via intermolecular energy transfer from the excited triplet-state dye to the ground triplet-state oxygen. Femtosecond transient absorption measurements are reported here for the excited singlet state dynamics of m-THPC in solution. The observed early time kinetics were best fit using a triple exponential function with time constants of 350 fs, 80 ps and > or = 3.3 ns. The fastest decay (350 fs) was attributed to either internal conversion from S2 to S1 or vibrational relaxation in S2. Multichannel time-resolved absorption and emission spectroscopies were also used to characterize the excited singlet and triplet states of the dye on nanosecond to microsecond time scales at varying concentrations of oxygen. The nanosecond time-resolved absorption data were fit with a double exponential with time constants of 14 ns and 250 ns in ambient air, corresponding to lifetimes of the S1 and T1 states, respectively. The decay of the T1 state varied linearly with oxygen concentration, from which the intrinsic decay rate constant, ki, of 1.5 x 10(6) s-1 and the biomolecular collisional quenching constant, kc, of 1.7 x 10(9) M-1 s-1 were determined. The lifetime of the S1 state of 10 ns was confirmed by fluorescence measurements. It was found to be independent of oxygen concentration and longer than lifetimes of other photosensitizers.  相似文献   

8.
Several retinal dystrophies are associated with the accumulation of lipofuscin, a pigment mixture, in the retinal pigment epithelium (RPE). One of the major fluorophores of this mixture has been identified as the bis-retinoid pyridinium compound, A2-E. Because this compound absorbs incident radiation that is transmitted by the anterior segment of the human eye, photophysical and photochemical studies were performed to determine if A2-E could photosensitize potentially damaging reactions. Steady-state fluorescence measurements indicate that the fluorescence emission maximum and quantum yield are very sensitive to the chemical environment and a correlation between these two parameters and the solvent dielectric constant is observed. Time-resolved absorption experiments of A2-E in pure organic solvents showed no formation of transient species on the timescale of our experiments. However, when these measurements were repeated for A2-E in Triton X-100 micelles, a short-lived (tau approximately 14 microseconds), weak absorption was observed. This species is quenched by oxygen (k = 2 x 10(9) M-1 s-1) and by the addition of the antioxidants, cysteine and N,N,N',N'-tetramethylphenylenediamine. Quenching of this species by 2,3,5-trimethylhydroquinone results in the formation of the 2,3,5-trimethylsemiquinone free radical and an increase in yield of the A2-E-derived species. Sensitization of the A2-E triplet excited state indicates that the species observed in micelles upon direct excitation is not consistent with the triplet excited state. Based on these data we tentatively assign this absorption to a free radical. In the RPE these initial processes can ultimately lead to damage to the tissue through the formation of peroxides and other oxidized species.  相似文献   

9.
Irradiation of porphyrin-manganese(III) perchlorate complexes in acetonitrile with 355 nm laser light gave MnV-oxo intermediates that were characterized by their UV-vis spectra and reactivities. The MnV-oxo species of tetrakis(pentafluorophenyl)porphyrin (2), tetraphenylporphyrin (4), and tetra-(4-(N-methylpyridiniumyl))porphyrin (6) were generated. Second-order rate constants for reactions of 2 with substrates were as follows: 6.1 x 105 M-1 s-1 (cis-stilbene), 1.3 x 105 M-1 s-1 (diphenylmethane), 1.3 x 105 M-1 s-1 (ethylbenzene), and 0.55 x 105 M-1 s-1 (ethylbenzene-d10). In oxidations of cis-stilbene and diphenylmethane, the order of reactivity of the MnV-oxo species was 2 > 6 > 4.  相似文献   

10.
The reactions between edaravone and various one-electron oxidants such as (*)OH, N(3)(*), Br(2)(-), and SO(4)(-), have been studied by pulse radiolysis techniques. The transient species produced by the reaction of edaravone with (*)OH radical shows an absorption band with lambda(max)=320 nm, while the oxidation by N(3)(*), Br(2)(-), SO(4)(-) and CCl(3)OO(*) results in an absorption band with lambda(max)=345 nm. Different from the previous reports, the main transient species by the reaction of edaravone with (*)OH radical in the absence of O(2) is attributed to OH-adducts. At neutral condition (pH 7), the rate constants of edaravone reacting with (*)OH, N(3)(*), SO(4)(-), CCl(3)OO(*), and e(aq)(-) are estimated to be 8.5x10(9), 5.8x10(9), 6x10(8), 5.0x10(8) and 2.4x10(9)dm(3)mol(-1)s(-1), respectively. From the pH dependence on the formation of electron adducts and on the rate constant of edaravone with hydrated electron, the pK(a) of edaravone is estimated to be 6.9+/-0.1.  相似文献   

11.
Two n-type molecular materials are covalently combined into a new photovoltaic component for polymer solar cells. Light harvesting by the perylenediimide results in very fast energy transfer to the fullerene unit, as shown with femtosecond transient absorption spectroscopy in toluene solution. Two energy transfer rates are observed of 2.5 x 10(12) s-1 (53%) and 2 x 10(11) s-1 (47%), attributed to two conformations. The final excited state that is populated is a perylenediimide-based triplet state that is formed on the nanosecond time scale with a high yield.  相似文献   

12.
Using water-soluble 1,8-naphthalimide derivatives, the mechanisms of photosensitized DNA damage have been elucidated. Specifically, a comparison of rate constants for the photoinduced relaxation of supercoiled to circular DNA, as a function of dissolved halide, oxygen and naphthalimide concentration, has been carried out. The singlet excited states of the naphthalimide derivatives were quenched by chloride, bromide and iodide. In all cases the quenching products were naphthalimide triplet states, produced by induced intersystem crossing within the collision complex. Similarly, the halides were found to quench the triplet excited state of the 1,8-naphthalimide derivatives by an electron transfer mechanism. Bimolecular rate constants were < 10(5) M-1 s-1 for quenching by bromide and chloride. As expected from thermodynamic considerations quenching by iodide was 6.7 x 10(9) and 8.8 x 10(9) M-1 s-1 for the two 1,8-naphthalimide derivatives employed. At sufficiently high ground-state concentration self-quenching of the naphthalimide triplet excited state also occurs. The photosensitized conversion of supercoiled to circular DNA is fastest when self-quenching reactions are favored. The results suggest that, in the case of 1,8-naphthalimide derivatives, radicals derived from quenching of the triplet state by ground-state chromophores are more effective in cleaving DNA than reactive oxygen species or radicals derived from halogen atoms.  相似文献   

13.
p-Biphenylyldiazomethane was excited by femtosecond pulses of UV light in acetonitrile, in cyclohexane, and in methanol. Ultrafast photolysis produces a singlet excited state of p-biphenylyldiazomethane with lambdamax = 490 nm, and lifetimes of less than 300 fs in acetonitrile, in cyclohexane, and in methanol. The decay of the excited state is accompanied by the growth of transient absorption with lambdamax = 360 nm. The carrier of this transient absorption is attributed to singlet p-biphenylylcarbene, a result that is consistent with the predictions of TD-DFT calculations. The singlet carbene lifetimes are 200 and 77 ps in acetonitrile and cyclohexane, respectively, and are controlled by intersystem crossing to the lower energy triplet state. The transient absorption does not decay to baseline in acetonitrile, because of the formation of nitrile ylide. The equilibrium mixture of singlet and triplet p-biphenylylcarbene reacts with acetonitrile to form a nitrile ylide (lambdamax = 370 nm), and with cyclohexane by C-H insertion 1-20 ns after the laser pulse. The singlet carbene lifetime is only 7.9 ps in methanol, owing to a rapid reaction with the solvent. Reaction with the solvent gives rise, in part, to a p-biphenylylbenzyl cation (lambdamax = 450 nm, tau = 6.3 ps) in methanol.  相似文献   

14.
A series of water-soluble 1,4,5,8-naphthalene diimide derivatives has been prepared and their redox and photophysical properties characterized. From laser flash photolysis studies, the triplet excited state of N,N'-bis[2-(N-pyridinium)ethyl]-1,4,5,8-naphthalene diimide (NDI-pyr) was found to undergo oxidative quenching with the electron donors DABCO, tyrosine, and tryptophan as expected from thermodynamics. Interestingly, the reactivities of naphthalene diimides (NDI) possessing alpha- and beta-carboxylic acid substituents (R = -CH2COO-, -C(CH3)2COO-, and -CH2CH2COO-) were strikingly different. In these compounds, the transient produced upon 355 nm excitation did not react with the electron donors. Instead, this transient reacted rapidly (k > 10(8)-10(9) M-1 s-1) with known electron acceptors, benzyl viologen and ferricyanide. The transient spectrum of the carboxyalkyl-substituted naphthalimides observed immediately after the laser pulse was nearly identical to the one-electron-reduced form of 1,4,5,8-naphthalene diimide (produced independently using the bis-pyridinium-substituted naphthaldiimide). From our studies, we conclude that the transient produced upon nanosecond laser flash photolysis of NDI-(CH2)nCOO- is the species produced upon intramolecular electron transfer from the carboxylate moiety to the singlet excited state of NDI. In separate experiments, we verified that the singlet excited state of NDI-pyr does, indeed, react intermolecularly with acetate, alanine, and glycine. The process is further substantiated using thermodynamic driving force calculations. The results offer new prospects of the efficient photochemical production of reactive carbon-centered radicals.  相似文献   

15.
Direct laser excitation in benzene of 1,8-dihydroxy-9-anthrone (anthralin) does not lead to transient species with lifetimes in the nanosecond time regime or longer. The triplet state has been produced in benzene by pulse radiolysis and characterised in terms of its absorption spectrum (lambda max 560 nm), natural lifetime (11 microseconds), self-quenching properties (kmicrosecond = 2.6 x 10(7) l mol-1 s-1) and triplet energy (234 kJ mol-1). There is no tendency in the non-polar medium for production of either the triplet or ground state in a tautomeric form. The observed triplet state reacts with oxygen with a typical rate constant, 2.2 x 10(9) l mol-1 s-1. The products of this reaction are singlet oxygen (approximately 64%) and the anthralin radical (approximately 14%).  相似文献   

16.
Photoprocesses of 1,4-naphthoquinone (NQ) and its photoreactions with lysozyme in acetonitrile/water (3:1, v/v) solution were studied using 355nm laser flash photolysis technique combined with electrophoresis and turbidimetric assay. The transient spectra of NQ were observed and the transient species were assigned. The electron transfer process from N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) to NQ triplet state ((3)NQ( *)) was investigated and the rate constant was determined to be k(t1)=2.0x10(10)M(-1)s(-1). It has been found that (3)NQ( *) can abstract hydrogen atom from lysozyme with a rate constant of k(t2)=2.4x10(10)M(-1)s(-1). Furthermore, the results of steady-state analysis suggested that lysozyme can be damaged by NQ irradiated with UVA light influenced by the concentration of NQ and the gas saturated in the solution. The mechanisms of photosensitized damage of lysozyme were discussed.  相似文献   

17.
The oxazine dye, oxonine (3,7-diaminophenoxazin-5-ium chloride), 1, is photoreduced by Fe (II) sulfate in dilute sulfuric acid. The reaction mechanism is analogous to that for the photo-reduction of thiazine dyes by Fe (II), the most important difference being that reduction of oxonine occurs predominantly from its excited singlet state, S1, rather than from the triplet state, T1. The latter is formed with an intersystem crossing (isc) quantum yield of ca 1.7 x 10(-3). The quenching of S1 by Fe (II) has a rate constant kSQ = 2.2 +/- 0.1 x 10(9) M-1 s-1 and affords the one electron reduced product, semioxonine (R), with a limiting quantum yield, phi SR, of 0.26 +/- 0.02. In contrast, quenching of T1, generated by bromide ion quenching of S1 or by diacetyl sensitization, occurs with KTQ approximately 1.2 x 10(6) M-1 s-1, extrapolated to zero ionic strength, and affords R with a limiting probability, phi TR = 1.1 +/- 0.2. Three possible reasons for the lower quantum yield of the more exothermic S1 reduction are discussed. These are energy transfer from S1 to Fe (II), different rates of escape of R from the encounter complex as a consequence of the different states of protonation of R as initially formed from S1 and T1, and spin allowed back electron transfer in an exciplex formed between S1 and Fe (II). Evidence is also presented for a very low probability (ca 1%) induced isc from the encounter of S1 with paramagnetic Fe (II). Rate parameters for other processes important to the overall reduction mechanism such as disproportionation of R to leucooxonine L and oxonine, k(R)DIS = 1.7 +/- 0.2 x 10(9) M-1 s-1, oxidation of R by Fe (III), k(R)OX = 1.5 +/- 0.1 x 10(5) M-1 s-1, and oxidation of L by Fe (III), kLOX = 1.1 +/- 0.1 x 10(3) M-1 s-1, have also been measured. These results are contrasted with those for the closely related thionine/Fe(II) photoredox reaction, the most well understood system for photogalvanic energy conversion.  相似文献   

18.
Triplet-state properties of 1,4,8,11,15,18,22,25-octa-n-butoxyphthalocyanine and its zinc derivative were determined for the first time. The T1 state of the metal-free phthalocyanine was characterized by a short lifetime (tau T = 17 microseconds) and low quantum yield (phi T = 0.095), and quenching of the triplet by O2 occurred with a bimolecular rate constant (kT sigma = 1.3 x 10(8) M-1 s-1) that is indicative of an endogonic reaction. The zinc complex (ZnPc(OBu)8) was markedly better as a triplet photosensitizer with respect to both tau T (60 microseconds) and phi T (0.5). Quenching by O2 produced singlet oxygen with nearly 100% efficiency, and kT sigma (1.7 x 10(9) M-1s-1) was close to the spin-statistical diffusion-controlled limit. Phosphorescence measurements showed the energy of the T1 state of ZnPc(OBu)8 to be 100 kJ/mol, which is 6 kJ/mol above the 1 delta g state of O2. These photoproperties, together with Q-band absorption maxima in the mid-700 nm range indicate that metal-centered 1,4,8,11,15,18,22,25-octaalkoxyphthalocyanines have excellent potential as sensitizers in photodynamic therapy.  相似文献   

19.
Vitamin B6 (pyridoxine, 1) and its derivatives: pyridoxal (2), pyridoxal 5-phosphate (3) and pyridoxamine (4) are important natural compounds involved in numerous biological functions. Pyridoxine appears to play a role in the resistance of the filamentous fungus Cercospora nicotianae to its own abundantly produced strong photosensitizer of singlet molecular oxygen (1O2), cercosporin. We measured the rate constants (kq) for the quenching of 1O2 phosphorescence by 1-4 in D2O. The respective total (physical and chemical quenching) kq values are: 5.5 x 10(7) M-1 s-1 for 1; 7.5 x 10(7) M-1 s-1 for 2, 6.2 x 10(7) M-1 s-1 for 3 and 7.5 x 10(7) M-1 s-1 for 4, all measured at pD 6.2. The quenching efficacy increased up to five times in alkaline solutions and decreased approximately 10 times in ethanol. Significant contribution to total quenching by chemical reaction(s) is suggested by the degradation of all the vitamin derivatives by 1O2, which was observed as declining absorption of the pyridoxine moiety upon aerobic irradiation of RB used to photosensitize 1O2. This photodegradation was completely stopped by azide, a known physical quencher of 1O2. The pyridoxine moiety can also function as a redox quencher for excited cercosporin by forming the cercosporin radical anion, as observed by electron paramagnetic resonance. All B6 vitamers fluoresce upon UV excitation. Compounds 1 and 4 emit fluorescence at 400 nm, compound 2 at 450 nm and compound 3 at 550 nm. The fluorescence intensity of 3 increased approximately 10 times in organic solvents such as ethanol and 1,2-propanediol compared to aqueous solutions, suggesting that fluorescence may be used to image the distribution of 1-4 in Cercospora to understand better the interactions of pyridoxine and 1O2 in the living fungus.  相似文献   

20.
Molecular modeling demonstrates that the first excited state of the triplet ketone (T1K) in azide 1b has a (pi,pi*) configuration with an energy that is 66 kcal/mol above its ground state and its second excited state (T2K) is 10 kcal/mol higher in energy and has a (n,pi*) configuration. In comparison, T1K and T2K of azide 1a are almost degenerate at 74 and 77 kcal/mol above the ground state with a (n,pi*) and (pi,pi*) configuration, respectively. Laser flash photolysis (308 nm) of azide 1b in methanol yields a transient absorption (lambdamax=450 nm) due to formation of T1K, which decays with a rate of 2.1 x 105 s-1 to form triplet alkylnitrene 2b (lambdamax=320 nm). The lifetime of nitrene 2b was measured to be 16 ms. In contrast, laser flash photolysis (308 nm) of azide 1a produced transient absorption spectra due to formation of nitrene 2a (lambdamax=320 nm) and benzoyl radical 3a (lambdamax=370 nm). The decay of 3a is 2 x 105 s-1 in methanol, whereas nitrene 2a decays with a rate of approximately 91 s-1. Thus, T1K (pi,pi*) in azide 1b leads to energy transfer to form nitrene 2b; however, alpha-cleavage is not observed since the energy of T2K (n,pi*) is 10 kcal/mol higher in energy than T1K, and therefore, T2K is not populated. In azide 1a both alpha-cleavage and energy transfer are observed from T1K (n,pi*) and T2K (pi,pi*), respectively, since these triplet states are almost degenerate. Photolysis of azide 1a yields mainly product 4, which must arise from recombination of benzoyl radicals 3a with nitrenes 2a. However, products studies for azide 1b also yield 4b as the major product, even though laser flash photolysis of azide 1b does not indicate formation of benzoyl radical 3b. Thus, we hypothesize that benzoyl radicals 3 can also be formed from nitrenes 2. More specifically, nitrene 2 does undergo alpha-photocleavage to form benzoyl radicals and iminyl radicals. The secondary photolysis of nitrenes 2 is further supported with molecular modeling and product studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号