首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of 4-O-methylglucuronoxylan (GX) on the hornification of bleached kraft and acid sulphite Eucalyptus globulus chemical pulps has been investigated. Almost straight-line dependence of kraft pulp hornification from GX content was explained through the diminishing of fibrils aggregation and better accessibility of amorphous cellulose regions to water in GX enriched pulps. The higher hornification of sulphite than kraft pulp was assigned to lower GX content in the former and to unfavourable rearrangement of cellulose molecules in crystalline and amorphous regions during acid sulphite pulping.  相似文献   

2.
The effect of process variables on uronic acids (UAs) and hexenuronic acids (HexAs) in the annual crop Arundo donax L. during ethanol–alkali pulping has been examined. A substantial loss of UA moieties (up to 90%) was observed by the end of pulping (target kappa number 18) performed with 25% NaOH and 40% EtOH (by volume) within the temperature range of 130–150 °C. At the same time, the progressive formation of HexA in pulp was detected from the early phases of delignification. The proportion of HexA in the residual UA of the final pulp was found to be 84%, indicating almost complete conversion of 4-O-methylglucuronic acid side groups (MeGlcA) of heteroxylan into HexA. The kinetics of UA degradation and HexA formation has been described in terms of three consecutive first-order reaction stages. The overall rate of UA degradation was one order higher than the rate of UA conversion into HexA. The values of apparent activation energy were estimated as 68.6 and 94.7 kJ mol–1, respectively. The reaction medium alkalinity was shown to be the controlling factor for UA and HexA stability during ethanol–alkali pulping. An increase in alkali charge from 5% to 35% (as NaOH) led to UA loss of 40%, but promoted HexA formation from 11.8 to 20.1 mol g–1. The addition of organic solvent to the alkaline pulping solution had a similar effect, and about 10% of UA was lost and the content of HexA increased from 6.9 to 10.9 mol g–1 with an increase in ethanol proportion in the liquor from 20% to 60%.  相似文献   

3.
The aim of this study was to investigate the changes in carbohydrate components and the crystalline structure in hemp bast fibers by adding ethyl acetate to acetic acid/water pulping processes. It was found that ethyl acetate added to acetic acid/water process had a positive effect on yield, viscosity and carbohydrate components in pulp. It was assumed that the delignification ratio increased by adding ethyl acetate to aqueous acetic acid pulping. Xylose content in hemp bast fibers was affected more negatively in the ethyl acetate/acetic acid/water process than in the acetic acid/water one. Crystallinity and crystallite size were higher in pulp sample obtained by the acetic acid/water process without ethyl acetate.  相似文献   

4.
Resin acids are tricyclic diterpenoids which are natural constituents of the wood from conifers. They are released from the wood during the manufacture of pulp and paper. These acids are very resistant to chemical degradation and survive the pulping and also the EOP bleaching process (EOP=alkaline extraction, oxygen and peroxide, the chemicals used in the bleaching process). Resin acids were extracted from alkaline medium using liquid–liquid extraction with t-butyl methyl ether and solid phase extraction with RP C18 adsorbent and a highly porous polystyrene-divinylbenzene polymer. After conversion of the acids to their pentafluorobenzyl esters, the extracts were analysed by GC/MS using a 25 m OV17 capillary column. Recovery values for single resin acids were determined by all three extraction methods. The solid phase extraction methods were applied to the analysis of the EOP effluent from a pulp mill bleaching process. 14 different resin acids and one resin acid methyl ester have been identified in the effluent. One of these was an oxo resin acid which might well be a product of the bleaching process.  相似文献   

5.
Brewer’s spent grain (BSG) was evaluated for bleached pulp production. Two cellulose pulps with different chemical compositions were produced by soda pulping: one from the original raw material and the other from material pretreated by dilute acid. Both of them were bleached by a totally chlorine-free sequence performed in three stages, using 5% hydrogen peroxide in the two initial, and a 0.25 N NaOH solution in the last one. Chemical composition, kappa number, viscosity, brightness and yield of bleached and unbleached pulps were evaluated. The high hemicellulose (28.4% w/w) and extractives (5.8% w/w) contents in original BSG affected the pulping and bleaching processes. However, soda pulping of acid pretreated BSG gave a cellulose-rich pulp (90.4% w/w) with low hemicellulose and extractives contents (7.9% w/w and <3.4% w/w, respectively), which was easily bleached achieving a kappa number of 11.21, viscosity of 3.12 cp, brightness of 71.3%, cellulose content of 95.7% w/w, and residual lignin of 3.4% w/w. Alkaline and oxidative delignification of acid pretreated BSG was found as an attractive approach for producing high-purity, chlorine-free cellulose pulp.  相似文献   

6.
The dependence of crystalline structure and optical properties of pulp on anthraquinone (AQ) added to the soda process at different cooking times was determined in this study. Wheat (Triticum aestevum L.) straw was used as the raw material for pulp. Soda and soda-AQ processes were selected for pulping at 80 min and 120 min. The soda-AQ process improved the yield and viscosity of pulp delignification ratio for pulping in comparison with the soda process. Crystallinity of pulp samples decreased by adding anthraquinone to the soda process because of stabilized less ordered cellulose and amorphous hemicelluloses in pulp. It was determined that crystallinity of pulp samples decreased with longer cooking time, from 80 min to 120 min, in both soda and soda-AQ processes. Monoclinic structure was dominant in pulp samples; however, the triclinic structure ratio increased in both soda and soda-AQ processes compared to raw material. It was found that brightness and lightness values in pulp samples decreased when using anthraquinone depending on the changes of the crystalline structure.  相似文献   

7.
To explore further potential applications of acetic acid pulp, an investigation was conducted to develop a direct method for producing cellulose acetate from wood in combination with atmospheric acetic acid pulping. The process consists of delignification, totally chlorine-free bleaching, and esterification, with the concentrated acetic acid aqueous solution being used as only solvent throughout the process. The acetic acid pulp with kappa number of 30 and ISO brightness of 16 was bleached with 5% ozone on pulp to kappa number of 1.4 and brightness of 61. The resulting bleached pulp was further bleached with peracetic acid to kappa number of less than 1.0 and brightness of 68. The final bleached acetic acid pulp was acetylated with acetic anhydride in the concentrated acetic acid for 45 min to produce cellulose acetate with an apparent degree of substitution (DS) of 2.54. Although the product was lower grade compared with commercially available cellulose diacetate because it was prepared from the chemical pulp but not dissolving pulp, the product was almost soluble in acetone. Eventually, the DS of the acetone-soluble fraction was 2.62. The acetone solubility might be attributed to the original acetic acid pulp that had been partially acetylated during the pulping.  相似文献   

8.
Sugar cane bagasse pulps were obtained by ethanol/water organosolv process under acid and alkaline conditions. The best condition of acid pulping for the sugarcane bagasse was 0.02 mol/L sulfuric acid at 160 degrees C, for 1 h, whereas the best condition for alkaline pulping was 5% sodium hydroxide (base pulp) at 160 degrees C, for 3 h. For the residual lignin removal, the acid and alkaline pulps were submitted to a chemical bleaching using sodium chlorite. Pulps under acid and alkaline conditions bleached with sodium chlorite presented viscosities of 3.6 and 7.8 mPa x s, respectively, and mu-kappa numbers of 1.1 and 2.4, respectively. The pulp under acid condition, bleached with sodium chlorite was used to obtain carboxymethylcellulose (CMC). CMC yield was 35% (pulp based), showing mass gain after the carboxymethylation reaction corresponding to 23.6% of substitution or 0.70 groups -CH(2) COONa per unit of glucose residue. The infrared spectra showed the CMC characteristic bands and by the infrared technique it was possible to obtain a substitution degree (0.63), similar to the substitution degree calculated by mass gain (0.70).  相似文献   

9.
Ethanol/water organosolv pulping was used to obtain sugarcane bagasse pulp that was bleached with sodium chlorite. This bleached pulp was used to obtain cellulosic films that were further evaluated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). A good film formation was observed when temperature of 74 °C and baths of distilled water were used, which after FTIR, TGA, and SEM analysis indicated no significant difference between the reaction times. The results showed this to be an interesting and promising process, combining the prerequisites for a more efficient utilization of agro-industrial residues.  相似文献   

10.
Aqueous-phase prehydrolysis followed by alkaline pulping is a viable process to produce wood-based dissolving pulps. However, detailed characterisation of the achievable pulp quality, performance and cellulose structure is yet lacking. In this study, the production of hemicellulose-lean birch soda-anthraquinone pulps after prehydrolysis under various intensities was investigated. Increasing prehydrolysis intensity resulted in pulps of higher purity but lower cellulose yield and degree of polymerisation. Higher cellulose yield by using sodium borohydride during pulping was achieved at the expense of reducing pulp purity. Cellulose crystallinity was similar in all pulps indicating simultaneous degradation of both crystalline and amorphous cellulose regions. Reinforced prehydrolysis seemingly increased the cellulose crystal size and the interfibrillar distances. Moderate intensity prehydrolysis (170 °C) resulted in a pulp well suited for viscose application, whereas reinforced prehydrolysis favoured the production of acceptable cellulose triacetate dope. The performance of the pulps in viscose and acetate applications was strongly related to the chemical and structural properties.  相似文献   

11.
Biobleaching studies using laccase mediator system (LMS) were carried out, under optimized conditions, on two unbleached Eucalyptus globulus kraft pulps, one produced by conventional way, with kappa number of 16.1, and another with kappa number of 14.5, obtained by modified kraft procedure with a high liquor/wood ratio and with black liquor replacement in the middle of the cooking. The pulp properties before and after LMS and alkaline extraction were evaluated in terms of kappa number, hexeneuronic acid content, viscosity, brightness and acid insoluble lignin content.The original milled wood sample and the kraft pulps were characterized by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and thermogravimetry/mass spectrometry (TG/MS). Eucalypt wood lignin produces guaiacol and syringol derivatives during pyrolysis. These lignin products can be detected with high sensitivity using the selected ion chromatograms even in the bleached pulp of low lignin content (about 0.5%). Py-GC/MS revealed that the lignin moieties were similarly altered during biobleaching as during pulping, which is exemplified by the preferential removal of aldehyde groups from the alkyl side groups. Semi-quantitative analysis of the pyrograms indicates that the lignin content of the biobleached pulps is reduced by about half in comparison with the unbleached pulps. The TG/MS results show that the hemicellulose content of wood was strongly modified during pulping resulting in higher thermal stability.  相似文献   

12.
New acidic organosolv pulping processes, such as Acetosolv, Formacell and Milox, promise to have superior potential in terms of purification selectivity and specific investment costs. Consequently, a thorough investigation of these new acidic pulping processes in comparison to state-of-the-art acidic magnesium sulfite technology was conducted. The impact of pulping and bleaching parameters on the physical and chemical characteristics was studied to compare process efficiency and selectivity for each type of pulp made from Eucalypt wood. In addition to a detailed analysis of the chemical composition and physical properties on a molecular and supramolecular level, the TCF-bleached dissolving pulps were tested for their applicability in viscose fiber production. The influence of pulp properties as determined by standard and advanced analytical methods on process performance and selected fiber properties is emphasized.  相似文献   

13.
A wide range of kraft pulps from radiata pine produced by low-temperature kraft pulping in flow-through reactors was assessed for carboxyl and hexenuronic acid (HexA) contents using the conductometric titrations and UV spectrophotometer, respectively. The Kappa number of pulps varied from 20.8 to 84.7 when using a cooking liquor of 1 M effective alkali as Na2O, 25% sulfidity, and cooking time of 100–250 min. The experimental results showed that the carboxyl groups (including HexA) and HexA groups dissolved and their residual values in the pulp samples correlate linearly with Kappa number and pulp yield. The dissolving rate of all carboxyl groups is much faster than the loss of HexA. The HexA/lignin ratio decreased non-linearly with Kappa number.  相似文献   

14.
The performance of hot-water extraction (HWE) and steam treatment (ST), followed by kraft pulping were compared for production of high purity-grade dissolving pulp from green bamboo. With the same prehydrolysis intensity (represented by the P-factor), the fractionation efficiency of HWE is far lower than that of ST. Because of lower removal of non-cellulosic components, the solid residue from HWE (even at approximately double the prehydrolysis intensity, P-factor = 1,379) required more active alkali (AA) during kraft pulping to obtain a cellulose purity equivalent to that achieved by the ST (P-factor = 756)-kraft process. To reach equivalent hemicellulose removal, HWE required more severe intensity than ST. However, FTIR and SEM characterizations of solid residue confirmed that intensified HWE resulted in significant lignin condensation. Antagonistic effects of hemicellulose removal and lignin condensation extent on subsequent kraft pulping were therefore more apparent in HWE than that in ST. Under the same kraft pulping conditions, lignin condensation from a severely intensified HWE process (P-factor = 2,020) caused greater cellulose yield and viscosity loss than that found for ST. Finally, at a given residual pentosan or lignin content, the cellulose yields from all HWE-kraft pulps were about 3 % lower than those from ST-kraft pulps. Consequently, based on an optimally setup chlorine dioxide bleaching stage, a cellulosic pulp with alpha-cellulose content of 97.6 % and viscosity of 927 mL/g was successfully produced from a ST-kraft pulp (P-factor = 756, AA = 19 %).  相似文献   

15.
The aim of this work was to study the impact of cellulose depolymerisation on the beating potential and handsheet properties of the portuguese E. globulus kraft pulp. A homogeneous sample of eucalypt wood chips was cooked using different kraft pulping conditions (cooking temperatures and times, and sodium hydroxide and sodium sulphide concentrations) in order to obtain a wide variation for intrinsic viscosity of the pulps. In the range of industrial cooking conditions, this property was found to be linearly dependent on the effective alkali charge, for a given cooking time and temperature. Unbeaten and beaten (at 2000 rev. PFI) pulp properties were evaluated and the results confirm that the higher the pulp intrinsic viscosity the better the pulp beatability and the paper properties. However, the differences in the latter cannot be exclusively explained by the differences in viscosity, since pulps with the same viscosity may exhibit distinct papermaking potentials. It was then necessary to scan other pulp chemical characteristics that could also influence the development of paper properties such as lignin, pentosan content and polysaccharides relative composition.  相似文献   

16.
Research has intensified in recent years on organic solvent pulping processes to supplement or replace conventional pulping processes. One of the main problems with organosolv pulps is the inferior tear strength compared to kraft pulps. An investigation of the properties of two acidic (acetic acid organosolv and acid sulfite) and one basic white spruce pulp (kraft) was carried out to determine factors affecting differences in tear strength. Properties evaluated were lignin and sugar content, mineral composition, ESCA oxygen-to-carbon ratios, acid-base characteristics, water wettabilities, degree of polymerization and crystallinity of cellulose, fiber length and coarseness, and physical properties of the various pulps. Differences in tear strength have been attributed to degradation and changes in the cellulose structure, the hemicellulose-lignin matrix in which the degree of polymerization of hemicelluloses plays the most important role in low yield pulps, and finally, the bonding capacity of the fiber surfaces.  相似文献   

17.
In the present work, a novel approach to pretreat wheat straw pulping was investigated with ultrasound and xylanase to achieve maximum reduction in lignin content. Sequential xylanase pretreatment and alkaline pulping was found to reduce kappa number by 0.31 to 4.84?% compared with only alkaline pulping alone at different pulping conditions. Although Klason lignin of ultrasound-treated straw was found to be 7.37?% less compared with untreated straw, sequential ultrasound pretreatment and alkaline pulping could not show any significant reduction in kappa number compared with alkaline pulping alone. Also, sequential xylanase and ultrasound pretreatment could not show any significant reduction in kappa number. Total yield of the pulp was found to be less in ultrasound-assisted processing compared with both alkaline pulping alone and sequential xylanase pretreatment and alkaline pulping.  相似文献   

18.
In this study, the concept of multifunctional alkaline pulping has been approved to produce high-purity and high-yield dissolving pulps. The selective removal of hemicelluloses was achieved by either water autohydrolysis (PH) or alkaline extraction (E) both applied as pre-treatments prior to cooking. Alternatively, hemicelluloses were isolated after oxygen delignification in a process step denoted as cold caustic extraction (CCE). Eucalyptus globulus wood chips were used as the raw material for kraft and soda-AQ pulping. In all process modifications sulfur was successfully replaced by anthraquinone. By these modifications purified dissolving pulps were subjected to TCF bleaching and comprehensive viscose and lyocell application tests. All pulps met the specifications for dissolving pulps. Further more, CCE-pulps showed a significantly higher yield after final bleaching. Morphological changes such as ultrastructure of the preserved outer cell wall layers, specific surface area and lateral fibril aggregate dimension correlated with the reduced reactivity towards regular viscose processing. The residual xylan after alkali purification depicted a lower content of functional groups and a higher molecular weight and was obviously entrapped in the cellulose fibril aggregates which render the hemicelluloses more resistant to steeping in the standard viscose process. Simultaneously, the supramolecular structure of the cellulose is partly converted from cellulose I to cellulose II by the alkaline purification step which did not influence the pulps reactivity significantly. Nevertheless, these differences in pulp parameters did not affect the lyocell process due to the outstanding solubility of the pulps in NMMO. Laboratory spinning revealed good fiber strength for both, regular viscose and lyocell fibers. The high molecular weight xylan of the CCE-treated pulps even took part in fiber forming.  相似文献   

19.
Using the simultaneoussaccharification and fermentation (SSF) technique, pulp mill solid waste cellulose was converted into glucose using cellulase enzyme and glucose into lacticacid using NRRL B445. SSF experiments were conducted at various pH levels, temperatures, and nutrient concentrations, and the lactic acid yield ranged from 86 to 97%. The depletion of xylose in SSF was further investigated by inoculating NRRL B445 into a xylose-only medium. On prolonged incubation, depletion of xylose with lactic acid production was observed. An experimental procedure with a nonglucose medium was developed to eliminate the lag phase. From xylose fermentation, Lactobacillus delbrueckii yielded 88–92% lactic acid and 2–12% acetic acid.  相似文献   

20.
Knowledge about how different metal ions are bound to pulp fibers is very important for optimal metal management in pulping processes. A column chromatographic method was used to assess the differences in affinity of 14 metal ions to untreated, alkali-treated and peroxide-bleached thermomechanical pulp (TMP). A method of competition between cations in the column chromatographic experiments was used in the sorption experiments, with an excess of each metal ion compared to the total capacity of the pulp studied. The method is very sensitive and even small differences in affinities can be detected. By combining the results from sorption experiments with four different metal ion mixtures the following order of affinity was obtained: Pb2+ ≫ Cu2+ ≫ Cd2+ > Zn2+ > Ni2+ > Ba2+ > Ca2+ > Mn2+ > Sr2+ > Mg2+ ≫ Rb+ ≈ K+ > Na+ > Li+. All three types of pulps showed the same affinity order. Lead and copper ions were clearly most strongly bound to the pulp fibers. Within the alkali and alkaline earth metal groups the differences in affinity were quite small. The sorption of metal ions to pulp fibers takes place mainly by complexation, where the divalent metal ions are coordinated to functional groups (acid groups) in the fiber phase. Protonation constants and concentrations of acid groups were determined by potentiometric titration. A model with two carboxyl groups and two phenolic hydroxyl groups satisfied best the experimental data. By treatment with alkali and peroxide new acid groups were created and the total binding capacity of hydrogen ions increased from 137 μeq/g for untreated pulp to 187 and 228 μeq/g for alkali-treated and peroxide-treated pulp, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号