首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflationary models of the early universe provide a natural mechanism for the formation of large scale structure. This success brings to forefront the question of naturalness: Does a sufficiently long slow roll inflation occur generically or does it require a careful fine tuning of initial parameters? In recent years there has been considerable controversy on this issue (Hollands and Wald in Gen Relativ Gravit, 34:2043, 2002; Kofman et al. in J High Energy Phys 10:057, 2002); (Gibbons and Turok in Phys Rev D 77:063516, 2008). In particular, for a quadratic potential, Kofman et al. (J High Energy Phys 10:057, 2002) have argued that the probability of inflation with at least 65 e-foldings is close to one, while Gibbons and Turok (Phys Rev D 77:063516, 2008) have argued that this probability is suppressed by a factor of ~10−85. We first clarify that such dramatically different predictions can arise because the required measure on the space of solutions is intrinsically ambiguous in general relativity. We then show that this ambiguity can be naturally resolved in loop quantum cosmology (LQC) because the big bang is replaced by a big bounce and the bounce surface can be used to introduce the structure necessary to specify a satisfactory measure. The second goal of the paper is to present a detailed analysis of the inflationary dynamics of LQC using analytical and numerical methods. By combining this information with the measure on the space of solutions, we address a sharper question than those investigated in Kofman et al. (J High Energy Phys 10:057, 2002), Gibbons and Turok (Phys Rev D 77:063516, 2008), Ashtekar and Sloan (Phys Lett B 694:108, 2010): What is the probability of a sufficiently long slow roll inflation which is compatible with the seven year WMAP data? We show that the probability is very close to 1. The material is so organized that cosmologists who may be more interested in the inflationary dynamics in LQC than in the subtleties associated with measures can skip that material without loss of continuity.  相似文献   

2.
We report on some implications of the theory of turbulence developed by V. Yakhot (Phys. Rev. E 57(2):1737, 1998). In particular we focus on the expression for the scaling exponents ζ n . We show that Yakhot’s result contains three well known scaling models as special cases, namely K41, K62 and the theory by V. L’vov and I. Procaccia (Phys. Rev. E 62(6):8037, 2000). The model furthermore yields a theoretical justification for the method of extended self-similarity (ESS).  相似文献   

3.
We give mathematical proofs to a number of statements which appeared in the series of papers by Simmons et al. (Phys Rev E 76(4):041106, 2007; J Stat Mech Theory Exp 2009(2):P02067, 33, 2009) where they computed the probabilities of several percolation events.  相似文献   

4.
We have obtained an exact solution of the vacuum Brans-Dicke (Phys. Rev. 124:925, 1961) field equations for the metric tensor of a spatially homogeneous and anisotropic model. Some physical properties of the model are also studied.  相似文献   

5.
Quark masses are of great prominence in high-energy physics. In this paper, we have studied the heavy meson systems via solving the Lippmann-Schwinger equation by using the Martin potential for heavy quark masses. We have also attempted to use Martin potential to find an acceptable mass spectrum for heavy quarkonia. We obtained this spectrum via minimal phenomenological model (Melles in Phys. Rev. D. 62:074019, 2000).  相似文献   

6.
In this note we have applied directly the Shannon formula for information theory entropy to derive the Black Hole (Bekenstein-Hawking) entropy. Our analysis is semi-classical in nature since we use the (recently proposed Banerjee in Int. J. Mod. Phys. D 19:2365–2369, 2010 and Banerjee and Majhi in Phys. Rev. D 81:124006, 2010; Phys. Rev. D 79:064024, 2009; Phys. Lett. B 675:243, 2009) quantum mechanical near horizon mode functions to compute the tunneling probability that goes in to the Shannon formula, following the general idea of Brillouin (Science and Information Theory, Dover, New York, 2004). Our framework conforms to the information theoretic origin of Black Hole entropy, as originally proposed by Bekenstein.  相似文献   

7.
We introduce a class of Kac-like kinetic equations on the real line, with general random collisional rules which, in some special cases, identify models for granular gases with a background heat bath (Carrillo et al. in Discrete Contin. Dyn. Syst. 24(1):59–81, 2009), and models for wealth redistribution in an agent-based market (Bisi et al. in Commun. Math. Sci. 7:901–916, 2009). Conditions on these collisional rules which guarantee both the existence and uniqueness of equilibrium profiles and their main properties are found. The characterization of these stationary states is of independent interest, since we show that they are stationary solutions of different evolution problems, both in the kinetic theory of rarefied gases (Cercignani et al. in J. Stat. Phys. 105:337–352, 2001; Villani in J. Stat. Phys. 124:781–822, 2006) and in the econophysical context (Bisi et al. in Commun. Math. Sci. 7:901–916, 2009).  相似文献   

8.
We develop the first steps towards an analysis of geometry on the quantum spacetime proposed in Doplicher et al. (Commun Math Phys 172:187–220, 1995). The homogeneous elements of the universal differential algebra are naturally identified with operators living in tensor powers of Quantum Spacetime; this allows us to compute their spectra. In particular, we consider operators that can be interpreted as distances, areas, 3- and 4-volumes.  相似文献   

9.
We consider two cases of kinetically constrained models, namely East and FA-1f models. The object of interest of our work is the activity A(t){\mathcal {A}(t)} defined as the total number of configuration changes in the interval [0, t] for the dynamics on a finite domain. It has been shown in Garrahan et al. (J Phys A 42:075007, 2009; Phys Rev Lett 98:195702, 2007) that the large deviations of the activity exhibit a non-equilibrium phase transition in the thermodynamic limit and that reducing the activity is more likely than increasing it due to a blocking mechanism induced by the constraints. In this paper, we study the finite size effects around this first order phase transition and analyze the phase coexistence between the active and inactive dynamical phases in dimension 1. In higher dimensions, we show that the finite size effects are determined by the dimension and the choice of the boundary conditions.  相似文献   

10.
Recently Yang et al. (Int. J. Theor. Phys. 48:516, 2009) have shown that an unknown qubit can be teleported by using a particular GHZ-like state as quantum channel. However, there are several errors in the calculation which lead to incorrect conclusions. The errors have been indicated and corrected. It is also noted that their scheme and the independently proposed teleportation scheme of Zhang et al. (Int. J. Theor. Phys. 48:3331, 2009) uses quantum channel from the same family and any state of that family may be used for teleportation.  相似文献   

11.
Quasi-realistic heterotic-string models in the free fermionic formulation typically contain an anomalous U(1) that leads to supersymmetry breaking. Supersymmetry is restored by imposing F- and D-flatness on the vacuum. A three generation free fermionic standard-like model which did not admit stringent F- and D-flat directions has been presented (Cleaver et al. in Phys. Rev. D 78, 046009, 2008) and it was argued that all the moduli in that model were fixed. The particular property of that model was the reduction of the untwisted Higgs spectrum by a combination of symmetric and asymmetric internal dimension boundary conditions with respect to the internal fermions associated with the compactified dimensions. This reduction occurred without the need or presence of flat directions. In this paper we extend the analysis of free fermionic models with reduced Higgs spectrum to models with the same internal space but with modified gauge groups: SO(10) or flipped SU(5) subgroup. We show that all the models studied in this paper do admit stringent flat directions. Currently, the only examples of models that do not admit stringent flat directions are the standard-like models of Cleaver et al. (Phys. Rev. D 78, 046009, 2008). We comment on the relationship between flat directions and reduced Higgs in free fermionic models as well as the possible connection between moduli stabilization and model phenomenology.  相似文献   

12.
It is shown how to identify potential signatures of noncommutative geometry within the decay spectrum of a muon in orbit near the event horizon of a microscopic Schwarzschild black hole. This possibility follows from a re-interpretation of Moffat’s nonsymmetric theory of gravity, first published in Phys. Rev. D 19:3554, 1979, where the antisymmetric part of the metric tensor manifests the hypothesized noncommutative geometric structure throughout the manifold. It is further shown that for a given sign convention, the predicted signatures counteract the effects of curvature-induced muon stabilization predicted by Singh and Mobed in Phys. Rev. D 79:024026, 2009. While it is unclear whether evidence for noncommutative geometry may become observable anytime soon, this approach at least provides a useful direction for future quantum gravity research based on the ideas presented here.  相似文献   

13.
Based on their interesting properties, metal nanoparticles show the potential as an analytical tool in electronic (Burmeister et al. 2004), optical (Yguerabide and Yguerabide 1998), and catalytic applications (Liu 2006). Their characteristics depend on the composition, shape, and size of the single particles. These various properties are utilized in many different approaches such as optics, magnetics (Lang et al. 2007), and laser technology (Csaki et al. 2007). We investigated an alternative method for the synthesis of nanoparticles. In this case, an enzyme, horseradish peroxidase, induces a silver deposition and replaces a metal nanoparticle as the reaction seed. Depending on the reaction time, we could obtain particles in a range of few nanometers up to more than 250 nm. For a better understanding of the enzymatic silver deposition process, the silver particles produced by this process were analyzed by SEM, TEM, and atomic force microscopy (AFM) on a single particle level after different enhancement times. The AFM images were utilized for the characterization of particle height and volume to study the enzyme kinetics, i.e., the particle growth process. Thereby, two different phases are described: a first growth phase probably induced by the enzyme-related growth, and a second, more unspecific growth based on the metal deposition onto the silver deposits. These findings may help to use the enzyme-induced silver deposition in a quantitative manner for bioanalytical applications.  相似文献   

14.
Because quantum devices are expensive, quantum secret sharing protocols with collective eavesdropping-check are more efficient and easier to realize than protocols employing step-by-step detection. In a recent paper (Lin et al. in Opt. Commun. 282:4455, 2009), put forward a quantum secret sharing protocol with collective eavesdropping-check. However, Gao found the four-party protocol of Lin et al. is insecure in the sense that two dishonest agents may collaborate to eavesdrop half of Alice’s secret without introducing any error (Gao in Opt. Commun. 283:2997, 2010). We point that there is a grievous mistake in Gao’s attack strategy and the two agents can only get one eighth of, not half of, Alice’s secret. In this paper, we study the properties of entanglement swapping and improve Gao’s eavesdropping strategy so that two dishonest agents can get all of Alice’s secret. Also we improve Lin et al.’s quantum secret sharing protocol against such attack.  相似文献   

15.
It was shown that quantum metric fluctuations smear out the singularities of Green functions on the light cone (Ford, ), but it does not remove other ultraviolet divergences of the quantum field theory (QFT). We have proved that quantization in indefinite metric, i.e. QFT in Krein space, removes all divergences of the theory except light cone singularity (Gazeau, et al., Class. Quantum Gravity, 17:1415, 2000, ; Takook, Int. J. Mod. Phys. E, 11:509, 2002, ). In this paper, by considering the QFT in Krein space and the quantum metric fluctuations, it is shown that all divergences can be removed.  相似文献   

16.
In papers (Krejčiřík D. et al.: J. Phys. A: Math. Gen.: 39(32), 10143–10153 (2006); Krejčiřík D., Tater M.: J. Phys. A: Math. Theor. 41(24), 244 (2008)) a new very simple -symmetric model was introduced and closed formula for the metric operator was found. We use an alternative integral form of this metric operator to study the spectrum of the metric.  相似文献   

17.
We cannot translate quantum behavior arising with superposition states or entanglement efficiently into the classical language of conventional computers  (Feynman et al. in Int. J. Theor. Phys. 21:467, 1982). A universal quantum computer could describe and help to understand complex quantum systems. But it is envisioned to become functional only within the next decade(s). A shortcut was proposed via simulating the quantum behavior of interest in another quantum system, where all relevant parameters and interactions can be controlled and observables of interest detected sufficiently well. For example simulating quantum spin systems within an architecture of trapped ions (Porras and Cirac in Phys. Rev. Lett. 92:207901, 2004). Here we specify how we simulate the spin and all necessary interactions and how we calibrate their amplitudes. For example via a two-ion phase-gate operation on two axial motional modes simultaneously at a fidelity exceeding 95%. We explain the complete mode of operation of a quantum simulator on the basis of our simple model case—the proof of principle experiment of simulating the transition of a quantum magnet from paramagnetic into entangled ferromagnetic order  (Friedenauer et al. in Nat. Phys. 4:757, 2008) and emphasize some of the similarities and differences with a quantum computer.  相似文献   

18.
We show that the diffeomorphism anomaly together with the trace anomaly reveal a chiral Virasoro algebra near the event horizon of a black hole. This algebra is the same irrespective of whether the anomaly is covariant or consistent, thereby manifesting its universal character and the fact that only the outgoing modes are relevant near the horizon. Our analysis therefore clarifies the role of the trace anomaly in the diffeomorphism anomaly approach [Robinson and Wilczek in Phys. Rev. Lett. 95:011303, 2005; Iso et al. in Phys. Rev. Lett. 96:151302, 2006; Banerjee and Kulkarni in Phys. Rev. D 77:024018, 2008; Gangopadhyay and Kulkarni in Phys. Rev. D 77:024038, 2008] to the Hawking radiation.  相似文献   

19.
Spiral turbulence observed in Couette-Taylor system has been characterized using the phase diffusion equation suggested by Hegseth et al. [Phys. Rev. Lett. 62, 257 (1989)]. From space-time diagrams, we have measured the diffusion coefficient, the diffusion velocity, and the turbulent spiral pitch.  相似文献   

20.
Recently, energy condition inequalities in the context of modified Gauss-Bonnet gravity have been derived in Garcia et al. (Phys. Rev. D, 83:104032, 2011). Using these general inequalities, we examine the viability of specific forms of f(G) models proposed in De Felice and Tsujikawa (Phys. Lett. B, 675:1, 2009) that can be responsible for the late-time cosmic acceleration following the matter era. In doing so we also use the recent estimated values of the deceleration, jerk and snap parameters to obtain the bounds from the weak and strong energy conditions on the parameters of the above mentioned forms of f(G) gravity theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号