首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
Osteosarcoma is the most common primary bone tumor, but the pathogenesis is not well understood. While cyclooxygeanse-2 (COX-2) is known to be closely associated with tumor growth and metastasis in several kinds of human tumors, the function of COX-2 in osteosarcoma is unclear. Therefore, to investigate the function of COX-2 in osteosarcoma, we established stable cell lines overexpressing COX-2 in U2OS human osteosarcoma cells. COX-2 overexpression as well as prostaglandin E2 treatment promoted proliferation of U2OS cells. In addition, COX-2 overexpression enhanced mobility and invasiveness of U2OS cells, which was accompanied by increases of matrix metalloproteinase-2 and -9 (MMP-2 and -9) activities. Selective COX-2 inhibitors, NS-398 and celecoxib, inhibited cell proliferation and abrogated the enhanced mobility, invasiveness and MMP activities induced by COX-2 overexpression. These results suggest that COX-2 is directly associated with cell proliferation, migration and invasion in human osteosarcoma cells, and the therapeutic value of COX-2 inhibitors should be evaluated continuously.  相似文献   

2.
Celecoxib, also known as Celebrex (approved by FDA in 1998) and remembered as the fastest-selling drug in history, was used as a cyclooxygenase-2 (COX-2) selective inhibitor having both anti-inflammatory and anticancer activities. Most recent studies have revealed that the apoptotic activity of celecoxib (and its derivatives) is actually independent of the COX-2 inhibitory activity and that celecoxib also inhibits the kinase activity of 3-phosphoinositide-dependent protein kinase-1 (PDK1), suggesting that the well-known anticancer activity of celecoxib is not due to the inhibition of COX-2, but possibly is due to the inhibition of PDK1. It is highly desirable to develop new celecoxib derivatives as PDK1-specifc inhibitors to avoid the side effects of COX-2 inhibitors. To understand how PDK1 binds with celecoxib and its derivatives, we have performed extensive molecular docking and combined molecular dynamics (MD) simulations and molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations on eight representative PDK1 inhibitors, leading to the finding of a new, more favorable binding mode which is remarkably different from the previously proposed binding mode. Based on the determined most stable binding structures, the calculated binding free energies are all in good agreement with the corresponding experimental data, and the biological activity data available for celecoxib and its derivatives can be better interpreted. The obtained new insights, concerning both the binding mode and computational protocol, will be valuable not only for future rational design of novel, more potent PDK1-specific inhibitors as promising anticancer therapeutics, but also for rational design of drugs targeting other proteins.  相似文献   

3.
Lysophosphatidic acid (LPA) is a phospholipid growth factor that acts through G-protein-coupled receptors. Previously, we demonstrated an altered profile of LPA-dependent cAMP content during the aging process of human diploid fibroblasts (HDFs). In attempts to define the molecular events associated with the age-dependent changes in cAMP profiles, we determined the protein kinase A (PKA) activity, phosphorylation of cAMP-response element binding protein (CREB), and the protein expression of CRE-regulatory genes, c-fos and COX-2 in young and senescent HDFs. We observed in senescent cells, an increase in mRNA levels of the catalytic subunit a of PKA and of the major regulatory subunit Ialpha. Senescence-associated increase of cAMP after LPA treatment correlated well with increased CREB phosphorylation accompanying activation of PKA in senescent cells. In senescent cells, after LPA treatment, the expression of c-fos and COX-2 decreased initially, followed by an increase. In young HDFs, CREB phosphorylation decreased following LPA treatment, and both c-fos and COX-2 protein levels increased rapidly. CRE-luciferase assay revealed higher basal CRE-dependent gene expression in young HDFs compared to senescent HDFs. However, LPA-dependent slope of luciferase increased more rapidly in senescent cells than in young cells, presumably due to an increase of LPA-induced CREB phosphorylation. CRE-dependent luciferase activation was abrogated in the presence of inhibitors of PKC, MEK1, p38MAPK, and PKA, in both young and senescent HDFs. We conclude that these kinase are coactivators of the expression of CRE-responsive genes in LPA-induced HDFs and that their changed activities during the aging process contribute to the final expression level of CRE-responsive genes.  相似文献   

4.
5.
6.
7.
Oxidative stress and inflammatory tissue damage are two major events frequently implicated in carcinogenesis. Numerous polyphenolic compounds derived from plants possess antioxidant and anti-inflammatory activities and are hence effective in preventing cancer. Oligonol is a polyphenol formulation enriched with catechin-type oligomers. As an initial approach to assess the chemopreventive potential of oligonol, we have determined its effects on inflammatory as well as oxidative damage in mouse skin irradiated with UVB. Topical application of oligonol onto the dorsal skin of male HR-1 hairless mice 30 min prior to UVB exposure diminished epidermal hyperplasia and formation of 4-hydroxynonenal, a biochemical hallmark of lipid peroxidation. Topical application of oligonol also significantly inhibited UVB-induced cyclooxygenase (COX-2) expression in mouse skin. Oligonol diminished the DNA binding of activator protein-1 (AP-1) and CCAAT/enhancer binding protein (C/EBP), and the expression of C/EBPdelta in mouse skin exposed to UVB. Our study also revealed that oligonol attenuated UVB-induced catalytic activity as well as expression of p38 mitogen-activated protein (MAP) kinase. Moreover, UVB-induced phosphorylation of another upstream kinase Akt was attenuated by oligonol. Taken together, oligonol showed antioxidative and anti-inflammatory effects in UVB-irradiated mouse skin by inhibiting COX-2 expression via blockade of the activation of AP-1 and C/EBP, and upstream kinases including p38 MAP kinase and Akt.  相似文献   

8.
Adipocytes function not only as in the storage and mobilization of lipids but also as endocrine cells by secreting tumor necrosis factor-α (TNF-α), free fatty acids, and other cytokines. To study the effects of dietary lipids and metabolic factors on the control of the life cycle of adipocytes, we utilized mouse 3T3-L1 preadipocytes that could be induced to differentiate into adipocytes. To evaluate the role of endogenous prostaglandins (PGs) in the adipogenic changes, we examined the effect of specific inhibitors of cyclooxygenase (COX). SC-560, a specific COX-1 inhibitor, suppressed adipogenesis dose dependently, suggesting a role of constitutive COX-1 in the endogenous synthesis of PGs, including PGJ2 derivatives formed by mature adipocytes with the ability to promote adipogenesis. NS-398, a COX-2 inhibitor, had little influence on the maturation processes. Both COX inhibitors were effective in stimulating apoptosis of preadipocytes induced by TNF-α, indicating that both PGE2 and PGF produced by preadipocytes through the action of both COX isoforms serve as survival factors. However, the effect of both inhibitors was negligible for the proliferation of preadipocytes. Moreover, conjugated linolenic acid from bitter gourd at lower concentrations that was without effects by itself synergistically stimulated TNF-α-induced apoptosis. Therefore, dietary lipid factors are capable of controlling the life cycle of adipocytes together with metabolic factors.  相似文献   

9.
Cyclooxygenase (COX)-2 inhibitors are known to be used as chemopreventative agents against certain malignancies. Thus far, there has been very limited information on whether COX-2 inhibitors protect against chronic narrow-band UVB (NB-UVB)-induced immunosuppression. The present study investigated the effect of nonselective and specific COX-2 inhibitors, indomethacin and celecoxib, on epidermal Ia+ Langerhans cells (LCs) and Thy-1+ dendritic epidermal T cells (DETCs) in mice irradiated with NB-UVB. Sixty female BALB/c mice were divided randomly into the control group (sham) and the experimental groups (irradiated with NB-UVB for 17 weeks, further divided into five groups according to the diets containing different concentrations of either COX-2 inhibitors). Alterations in the density and morphology of epidermal Ia+ LCs and Thy-1+ DETCs in mice were documented using fluorescence microscopy. Chronic NB-UVB irradiation substantially decreased the density and altered the morphology of the epidermal Ia+ LCs and Thy-1+ DETCs in control mice. The dietary supplementation of both COX-2 inhibitors displayed a dosage-dependent protective effect on the murine dendritic cells irradiated by NB-UVB. In conclusion, COX-2 inhibitors protected against chronic NB-UVB-induced density and morphologic changes in epidermal Ia+ LCs and Thy-1+ DETCs in mice.  相似文献   

10.
11.
Summary The selective inhibition of COX-2 isozymes should lead to a new generation of NSAIDs with significantly reduced side effects; e.g. celecoxib (Celebrex®) and rofecoxib (Vioxx®). To obtain inhibitors with higher selectivity it has become essential to gain additional insight into the details of the interactions between COX isozymes and NSAIDs. Although X-ray structures of COX-2 complexed with a small number of ligands are available, experimental data are missing for two well-known selective COX-2 inhibitors (rofecoxib and nimesulide) and docking results reported are controversial. We use a combination of a traditional docking procedure with a new computational tool (Contact Statistics analysis) that identifies the best orientation among a number of solutions to shed some light on this topic.  相似文献   

12.
以选择性环氧化酶-2(COX-2)抑制剂Celecoxib为先导,根据其构效关系和分子模拟研究结果,应用生物电子等排原理等药物设计方法,设计合成了19个结构全新的二芳基取代-1,2,4-三唑类衍生物,其结构经IR,1HNMR,MS和元素分析确证.初步的药理试验结果表明,部分目标化合物具有一定的抗炎活性.  相似文献   

13.
Inflammatory stimuli result in the production of cutaneous eicosanoids, which are known to contribute to the process of tumor promotion. Cyclooxygenase (COX), the rate-limiting enzyme for the production of prostaglandins (PG) from arachidonic acid, exists in at least two isoforms, COX-1 and COX-2. COX-1 is constitutively expressed in most tissues and plays various physiological roles, whereas increased COX-2 expression is known to occur in several types of epithelial neoplasms. Enhanced PG synthesis is a potential contributing factor in UVB-induced nonmelanoma skin cancers (NMSC). Increased COX-2 staining occurs in murine skin neoplasms after chronic exposure to carcinogenic doses of UVB. In this study, immunohistochemical and Western blot analyses were employed to assess longitudinally COX-2 expression in a standard mouse UVB complete carcinogenesis protocol and in human basal cell carcinomas (BCC) and squamous cell carcinomas (SCC). During UVB irradiation of mice, COX-2 expression consistently increased in the hyperplastic skin, the benign papillomas and the SCC. COX-2 expression was also increased in human actinic keratoses, SCC and BCC as well as in murine SCC and BCC. The pattern of COX-2 expression was quite variable, occurring in a patchy distribution in some lesions with staining confined mainly to suprabasal cell layers. In general, COX-2 expression progressively became more extensive in benign papillomas and well-differentiated murine SCC. The staining was predominantly cytoplasmic and perinuclear in some focal areas in tissue stroma around both murine and human tumors. Western blot analysis confirmed negative COX-2 expression in normal skin, whereas acute UVB exposure resulted in increased enzyme expression, which continued to increase in developing papillomas and SCC. Because of the evidence indicating a pathogenic role for eicosanoids in murine and human skin neoplasms, we performed studies to assess the anti-inflammatory and anticarcinogenic effects of green tea extracts, which are potent antioxidants. Acute exposure of the human skin to UVB (minimum erythema dose x 4) caused a transient enhancement of the COX-2 expression, which reverted to baseline within hours; however, in murine skin the expression persisted for several days. Pretreatment with the topically applied green tea extract (1 mg/cm2) largely abrogated the acute COX-2 response to UVB in mice or humans. In summary, enhanced COX-2 expression serves as a marker of epidermal UVB exposure for murine and human NMSC. These results suggest that COX-2 inhibitors could have potent anticarcinogenic effects in UVB-induced skin cancer.  相似文献   

14.
Methyl-beta-cyclodextrin, a cyclic oligosaccharide known for its interaction with the plasma membrane induces several events in cells including cell growth and anti-tumor activity. In this study, we have investigated the possible role of cyclooxygenase 2 (COX-2) in cell growth arrest induced by methyl-beta-cyclodextrin in Raw264.7 macrophage cells. Methyl-beta-cyclodextrin inhibited cell growth and arrested the cell cycle, and this cell cycle arrest reduced the population of cells in the S phase, and concomitantly reduced cyclin A and D expressions. Methyl-beta-cyclodextrin in a dose- and time-dependent manner, also induced COX-2 expression, prostaglandin E(2) (PGE(2)) synthesis, and COX-2 promoter activity. Pretreatment of cells with NS398, a COX-2 specific inhibitor completely blocked PGE(2) synthesis induced by methyl-beta-cyclodextrin, however inhibition on cell proliferation and cell cycle arrest was not effected, suggesting non-association of COX-2 in the cell cycle arrest. These results suggest that methyl-beta-cyclodextrin induced cell growth inhibition and cell cycle arrest in Raw264.7 cells may be mediated by cyclin A and D1 expression.  相似文献   

15.
Ten new hybrids were designed and synthesized, their chemical structures were confirmed through spectral and elemental analysis. The new hybrids were screened against lung, breast and liver cancer cell lines (A549, MCF7 and Hep3B), in addition to normal fibroblast cells. Compound 13a was the most active and selective one on the lung cancer cell line (A549), its IC50 and S.I. values were 2.4 µM and 83.2, respectively. Compound 14b was active on MCF7 with the best selectivity towards this cell line. The new derivatives were screened for their inhibitory activity against COX enzymes, the obtained results revealed that compound 13a and 14b were more active inhibitors for COX-2 than celecoxib. This finding encourages us to consider COX-2 inhibitory activity as a proposed mechanism for their anticancer activity.  相似文献   

16.
Environmental stimuli attack the skin daily resulting in the generation of reactive oxygen species (ROS) and inflammation. One pathway that regulates oxidative stress in skin involves Protein Phosphatase 2A (PP2A), a phosphatase which has been previously linked to Alzheimer’s Disease and aging. Oxidative stress decreases PP2A methylation in normal human dermal fibroblasts (NHDFs). Thus, we hypothesize agents that increase PP2A methylation and activity will promote skin health and combat aging. To discover novel inhibitors of PP2A demethylation activity, we screened a library of 32 natural botanical extracts. We discovered Grape Seed Extract (GSE), which has previously been reported to have several benefits for skin, to be the most potent PP2A demethylating extract. Via several fractionation and extraction steps we developed a novel grape seed extract called Activated Grape Seed Extract (AGSE), which is enriched for PP2A activating flavonoids that increase potency in preventing PP2A demethylation when compared to commercial GSE. We then determined that 1% AGSE and 1% commercial GSE exhibit distinct gene expression profiles when topically applied to a 3D human skin model. To begin to characterize AGSE’s activity, we investigated its antioxidant potential and demonstrate it reduces ROS levels in NHDFs and cell-free assays equal to or better than Vitamin C and E. Moreover, AGSE shows anti-inflammatory properties, dose-dependently inhibiting UVA, UVB and chemical-induced inflammation. These results demonstrate AGSE is a novel, multi-functional extract that modulates methylation levels of PP2A and supports the hypothesis of PP2A as a master regulator for oxidative stress signaling and aging in skin.  相似文献   

17.
Celecoxib is a selective inhibitor of cyclooxygenase-2 (COX-2) that is a critical factor in carcinogenesis, but precise mechanism of its action remains to be elucidated. Here we evaluated the inhibitory effect of celecoxib on cell growth of human oral squamous cell carcinoma (OSCC) YD-10(B), which was established to be used as in vitro OSCC model, and identified celecoxib-regulated protein by proteomics techniques. Celecoxib (IC(50)=37 microM) inhibited the growth of YD-10(B) cells with the decrease of COX-2 protein expression. Its inhibition could be linked in the arrest of G(1) phase with increased levels of p(27) protein, a specific CDK inhibitor. Using proteomics, the 10- to 20-fold increase of heterogeneous nuclear ribonuclear protein C (hnRNP C), which has been suggested to be related with the translation of p(27) mRNA, was observed in celecoxib-treated YD-10(B) cells. In summary, celecoxib has a potential to induce the protein expression of hnRNP C and its increase subsequently induce the translation of p(27) mRNA, which trigger the inhibition of cell growth via p(27)-regulated cell cycle arrest in YD-10(B) cells. In addition, YD-10(B) cells could be useful to study the pathological mechanism of OSCC.  相似文献   

18.
UVA can penetrate dermis and cause functional damage of dermal fibroblasts leading photoaging. Ginseng is a widely used traditional Chinese medicine for skin aging. However, its effects on skin photoaging induced by UVA are not clear. In this study, we isolated ginseng proteins (GP), with molecular weights of 27 kDa and 13 kDa, and found that they alleviated the inhibitory effects of UVA on cell viability and increased percentage of NIH-3T3 fibroblasts in the S phase of cells cycle. GP also improved cell contraction ability, increased the expression and secretion of CoL-I, similar to MAPK phosphorylation inhibitors and reduced expression and secretion of MMP-1, MMP-2 and MMP-9 as well as the enzyme activities of MMP-2 and MMP-9. They reduced ROS content, DNA damage and 8-OHdG content, as well as the protein expression of p53, p21 and p16. The levels of p-ERK, p-p38 and p-JNK, p-c-Fos and p-c-Jun proteins were decreased by GP. Inactivated GP did not inhibit the cellular activity and expression and secretion of CoL-I irradiated by UVA. The results showed that GP can improve cell viability and contractile function by inhibiting DNA damage and collagen degradation to inhibit the photoaging effects of skin dermal cells caused by UVA.  相似文献   

19.
The discovery of selective cyclooxygenase-2 (COX-2) inhibitors represents a major achievement of the efforts over the past few decades to develop therapeutic treatments for inflammation. To gain insights into designing new COX-2-selective inhibitors, we address the energetic and structural basis for the selective inhibition of COX isozymes by means of a combined computational protocol involving docking experiment, force field design for the heme prothetic group, and free energy perturbation (FEP) simulation. We consider both COX-2- and COX-1-selective inhibitors taking the V523I mutant of COX-2 to be a relevant structural model for COX-1 as confirmed by a variety of experimental and theoretical evidences. For all COX-2-selective inhibitors under consideration, we find that free energies of binding become less favorable as the receptor changes from COX-2 to COX-1, due to the weakening and/or loss of hydrogen bond and hydrophobic interactions that stabilize the inhibitors in the COX-2 active site. On the other hand, COX-1-selective oxicam inhibitors gain extra stabilization energy with the change of residue 523 from valine to isoleucine because of the formations of new hydrogen bonds in the enzyme-inhibitor complexes. The utility of the combined computational approach, as a valuable tool for in silico screening of COX-2-selective inhibitors, is further exemplified by identifying the physicochemical origins of the enantiospecific selective inhibition of COX-2 by -substituted indomethacin ethanolamide inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号