首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
Monodisperse poly(poly(ethyleneglycol) methyl ether acrylate-co-acrylic acid) (poly(PEGMA-co-AA)) microspheres were prepared by distillation-precipitation polymerization with divinylbenzene (DVB) as crosslinker with 2,2'- azobisisobutyronitrile (AIBN) as initiator in neat acetonitrile without stirring. Under various reaction conditions, four distinct morphologies including the sol, microemulsion, microgels and microspheres were formed during the distillation of the solvent from the reaction system. A 2D morphological map was established as a function of crosslinker concentration and the polar monomer AA concentration, in comonomer feed in the transition between the morphology domains. The effect of the covalent crosslinker DVB on the morphology of the polymer network was investigated in detail at AA fraction of 40 vol%. The ratios of acid to ethylene oxide units presenting in the comonomers dramatically affected the polymer-polymer interaction and hence the morphology of the resultant polymer network. The covalent crosslinking by DVB and the hydrogen bonding crosslinking between two acid units as well as between the acid and ethylene oxide unit played key roles in the formation of monodisperse polymer microspheres.  相似文献   

2.
Monodisperse crosslinked poly(chloromethylstyrene-co-divinylbenzene) (poly(CMSt-co-DVB)) microspheres were prepared by distillation-precipitation copolymerization of chloromethylstyrene (CMSt) and divinylbenzene (DVB) in neat acetonitrile. The polymer particles had clean surfaces due to the absence of any added stabilizer. The size of the particles ranges from 2.59 μm to 3.19 μm and with mono-dispersity around 1.002-1.014. The effects of monomer feed in copolymerization on the microsphere formation were described. The polymer microspheres were characterized by SEM and chlorinity elemental analysis.  相似文献   

3.
杨新林 《高分子科学》2010,28(2):277-285
<正>Monodisperse hollow polymer microspheres having various functional groups on the shell-layer,such as carboxylic acid,pyridyl and amide,were prepared by two-stage distillation precipitation polymerization in neat acetonitrile in the absence of any stabilizer or additive,during which monodisperse poly(methacrylic acid)(PMAA) afforded from the first-stage polymerization was utilized as the seeds for the second-stage polymerization.The shell layer with different functional groups was formed during the second-stage copolymerization of either divinylbenzene(DVB) or ethyleneglycol dimethacrylate(EGDMA) as crosslinker and the functional comonomers,in which the hydrogen-bonding interaction between the carboxylic acid group of PMAA core and the functional groups of the corresponding comonomers,including carboxylic acid,amide and pyridyl,played an essential role for the formation of monodisperse core-shell functional microspheres.The hollow polymer microspheres were then developed after the subsequent removal of PMAA cores by dissolution in ethanol under basic condition.Transmission electron microscopy(TEM) and scanning electron microscopy (SEM) were used to determine the morphology of the resultant PMAA core,functional core-shell microspheres and the corresponding hollow polymer microspheres with different functional groups.FT-IR spectra confirmed the successful incorporation of the various functional groups on the shell layer of the hollow polymer microspheres.  相似文献   

4.
Molecularly imprinted polymers(MIPs)for solid-phase extraction and pre-concentration of esculetin have been successfully prepared by the bulk polymerization method using esculetin as a template molecule.Polymers of varying composition were prepared using different monomers(4-vinylpyridine,methacrylic acid,and acrylamide),ethylene glycol dimethacrylate as the cross-linker,2,2-azobis(2-methylpropinitrile)as the initiator,and different porogen solvents(ethanol,acetone/methanol,and acetonitrile).The best polymer was obtained when 4-vinylpyridine was used as the monomer and acetone/methanol(3:2)as the porogen solvent,whereas the template:-monomer:-cross-linker ratio was 1:4:20.The imprinting factor of the selected MIPs for esculetin was 3.77.The polymers were evaluated according to their selective recognition properties for esculetin and structurally-related compounds(esculin,scopoletin,coumarin,and 7-methoxycoumarin).Chemical and morphological characterizations of the polymers were investigated by FTIR and scanning electron microscope,which confirmed a high degree of polymerization.Surface area,pore volume,and pore size of the polymer were investigated by Brunauer-Emmett-Teller analysis.MIPs were also successfully used as solid-phase adsorbent materials for the extraction of esculetin from tobacco leaves.Esculetin contents in dried tobacco leaves were found to be(9.27±0.17)μg g-1.  相似文献   

5.
<正>Hollow poly(divinylbenzene-co-methacrylic acid)(P(DVB-co-MAA)) microspheres were prepared by the selective dissolution of the non-crosslinked poly(methacrylic acid)(PMAA) mid-layer in ethanol from the corresponding silica/PMAA/P(DVB-co-MAA) tri-layer hybrid microspheres,which were afforded by a three-stage reaction.Silica/PMAA core-shell hybrid microspheres were prepared by the second-stage distillation polymerization of methacrylic acid(MAA) via the capture of the oligomers and monomers with the aid of the vinyl groups on the surface of 3-(methacryloxy)propyl trimethoxysilane(MPS)-modified silica core,which was prepared by the St(o|¨)ber hydrolysis as the first stage reaction.The tri-layer hybrid microspheres were synthesized by the third-stage distillation precipitation copolymerization of functional MAA monomer and divinylbenzene(DVB) erosslinker in presence of silica/PMAA particles as seeds,in which the efficient hydrogen-bonding interaction between the carboxylic acid groups played as a driving force for the construction of monodisperse hybrid microspheres with tri-layer structure.The morphology and the structure of silica core,silica/PMAA core-shell particles,the tri-layer hybrid microspheres and the corresponding hollow polymer microspheres with movable silica cores were characterized by transmission electron microscopy(TEM),Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy(XPS).  相似文献   

6.
Polydimethylsiloxane (PDMS) rubber latex with two sorts of sensitizers, trimethylol propane tri-methacrylate (TMPTMA) and diethylene glycol di-acrylate (DEGDA), was irradiated with y-rays and electron beams in various conditions. The radiation crosslinking reaction of PDMS occurs in the inner phase of the latex and is relatively isolated from the water phase. Therefore the oxygen and the radicals produced by the radiolysis reaction of water almost have no effect on the crosslinking reaction of polymer. The experimental data correspond with the Charlesby-Pinner relationship in the main. The gelation doses, degree of crosslinking and degradation as well as G values of crosslinking were calculated. From them, the sensitization coefficients were derived to offer a quantitative measurement of the enhancing effect of sensitizer on the radiation crosslinking.  相似文献   

7.
A novel environmentally benign process for the synthesis of methyl N-phenyl carbamate (MPC) from methanol and phenylurea was studied. Effect of solvent and catalyst on the reaction behavior was investigated. The IR spectra of methanol and phenylurea dissolved in different solvents were also recorded. Compared with use of methanol as both a reactant and a solvent, phenylurea conversion and selectivity to MPC increased by using toluene, benzene or anisole as a solvent, while phenylurea conversion decreased slightly by using n-octane as a solvent. The phenylurea conversion declined nearly 50% when dimethyl sulfoxide (DMSO) was used as a reaction media, and MPC selectivity decreased as well. The catalytic reaction tests showed that a basic catalyst enhanced the selectivity to MPC while an acidic catalyst promoted the formation of methyl carbamate and aniline. Moderate degree of basicity showed the best catalytic performance in the cases studied.  相似文献   

8.
柏正武  周兴平 《高分子科学》2013,31(12):1725-1732
Micron-sized cellulose microspheres were prepared through sol-gel method using NaOH/urea solution to dissolve cellulose, then cross-linked by 1,6-hexanylene diisocyanate (HDI), toluene 2,4-diisocyanate (TDI) and 1,4-phenylene diisocyanate (PDI), respectively. The reaction conditions for partial modification of the microspheres were studied. The degree of substitution (DS) in cellulose was controlled by adjusting the reaction conditions. HDI-crosslinked microspheres were partially modified with phenyl isocyanate to obtain chiral stationary phases (CSPs). The CSPs of a lower degree of crosslinking (DC) showed better chiral recognition ability than those of a higher DC. Meanwhile the CSPs prepared by pre- modification exhibited better chiral recognition ability than those prepared by pre-crosslinking.  相似文献   

9.
Deng  Wei  Guo  Hua-Chao  Yu  Wei-Li  Kan  Cheng-You 《高分子科学》2018,36(1):43-48
Polymer hollow microspheres were prepared by performing alkali treatment on the multilayer core/shell polymer latex particles containing carboxyl groups. Effects of the shell composition and dosage as well as alkali type on the morphology of the microspheres were investigated. Results showed that in comparison with acrylonitrile(AN) and methacrylic acid(MAA), using butyl acrylate(BA) as the shell co-monomer decreased the glass transition temperature(T_g) of shell effectively and was beneficial to the formation of uniform and big hollow structure. Along with the increase of the shell dosage, the alkali-treated microspheres sequentially presented porous and hollow morphology, and the size of microspheres increased, while the hollow diameter increased first and then decreased, and the maximum hollow ratio reached 39.5%. Furthermore, the multilayer core/shell microspheres had better tolerance to NH_3·H_2O than to NaOH. When the molar ratio of alkali to methacrylic acid(MR_(alkali/acid)) for Na OH ranged from 1.15 to 1.30 or MRalkali/acid for NH_3·H_2O ranged from 1.30 to 2.00, the regular polymer hollow microspheres could be obtained.  相似文献   

10.
The organic nanoparticles of a blue-light-emitting molecule, 1,3-diphenyl-5-(9-anthryl)-2-pyrazuline, were prepared by reprecipitation method using acetonitrile as the solvent for the molecular precursor. Three morphologies, spherical, doughnut-shaped and cubic, could be observed on the silicon substrate forthe nanoparfides by the volume-controlled addition of acetonitrile. The evolution of particle morphology as a function of acetonitrile addition was attributed to the variation of the growth habits of the particles in the different environment. The nanoparticles exhibit the novel photoluminescence spectra as compared to those of monomer and the bulk crystals.  相似文献   

11.
Highly crosslinked narrow or monodisperse poly(ethyleneglycol dimethacryltae) (polyEGDMA) microspheres were prepared by distillation-precipitation polymerization in neat acetonitrile with 2,2′-azobis(2-methyl propinitrile) (AIBN) as an initiator. The polymer microspheres with clean surfaces due to the absence of any added stabilizer in the reaction system were formed simultaneously through a precipitation manner during the distillation of acetonitrile off the reaction system. The effects of the solvent, initiator concentration, monomer concentration and comonomer (divinylbenzene, DVB) fraction on the formation of the microspheres were investigated. Narrow- or monodisperse particles with spherical shape and smooth surface were obtained with diameters between 1.18 and 2.50 μm with monomer loading lower than 3.13 vol%. The surfaces of the microspheres became rougher, some elliptic particles and doublet or triplet appeared with the increase of monomer concentration (as high as 3.75 vol%). The yield of polymer microspheres was increased from 31% to 75% with the increase of EGDMA fraction from 0 to 100% when EGDMA was copolymerized with DVB. The resulting polymer microspheres were characterized with scanning electron microscope (SEM) and Fourier transform-IR spectra.  相似文献   

12.
以苯乙烯为单体、二乙烯基苯(DVB)为交联剂,过氧化二苯甲酰(BPO)为引发剂研究了蒸馏沉淀聚合法制备聚合物微球过程中交联单体二乙烯苯的用量对单分散聚合物微球成球的影响。结果表明,增加二乙烯基苯的比例,即提高交联度有利于形成单分散的聚合物微球。  相似文献   

13.
In this work, two different surface imprinting formats have been evaluated using thiabendazole (TBZ) as model template. The first format is a thin film of molecularly imprinted polymer (MIP) grafted from preformed silica particles using an immobilized iniferter‐type initiator (inif‐MIP). The second format is molecularly imprinted polymer microspheres with narrow particle size distribution and core‐shell morphology prepared by precipitation polymerization in a two‐step procedure. For the latter format, polymer microspheres (the core particles) were obtained by precipitation polymerization of divinylbenzene‐80 (DVB‐80) in acetonitrile. Thereafter, the core particles were used as seed particles in the synthesis of MIP shells by copolymerization of DVB‐80 and methacrylic acid in the presence of TBZ in a mixed solvent porogen (acetonitrile/toluene). The materials were characterized by elemental microanalysis, nitrogen sorption porosimetry and scanning (and transmission) electron microscopy. Thereafter, the imprinted materials were assessed as stationary phases in liquid chromatography. From this study it can be concluded that grafted MIP beads can be obtained in a simple and direct manner, consuming only a fraction of the reagents used typically to prepare imprinted particles from a monolithic imprinted polymer. Such materials can be used in the development of in‐line molecularly imprinted solid‐phase extraction methods. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1058–1066, 2010  相似文献   

14.
Precipitation polymerization of styrene (St)–divinylbenzene (DVB) has been carried out using acetonitrile/1‐propanol mixture as the reaction media and 2,2′‐azobisisobutyronitrile (AIBN) as initiator. Monodisperse micron‐sized poly(St‐co‐DVB) microspheres with clean and smooth surface were synthesized in the absence of any stabilizing agent such as surfactants or steric stabilizers. The effects of various polymerization parameters such as 1‐propanol fraction in the reaction media, initiator and total monomer concentration, DVB content, polymerization time and polymerization temperature on the morphology, particle size and size distribution were investigated. It was found that smoothly shaped stable particles were obtained when less than 70 vol% of 1‐propanol was used in the media. The particle size increased with the AIBN concentration, whereas the change of uniformity was less obvious. Monodisperse microspheres were obtained when the total monomers loading ranged from 0.5 to 3 vol%. The particle diameter ranged from 2.73 to 1.87 µm with an increasing DVB content and the uniformity was enhanced. In addition, the yield of microspheres increased with the increasing total monomer, initiator, and DVB concentration and polymerization time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This paper reports two important results with cross-linked precipitation polymerization. (1) Acetonitrile, a substance harmful to human health, is the most commonly used solvent for the synthesis of cross-linked polymeric microspheres by precipitation polymerization. Here, the much safer acetic acid replaced acetonitrile as a solvent in the precipitation polymerization of monodisperse cross-linked poly(divinylbenzene) (PDVB-55) microspheres. Pumpkin-like particles and microspheres were obtained. XPS results displayed a significant amount of double bonds on the surface of the particles. The effect of monomer content, temperature, and initiator amount on the formed particles were studied. For a DVB loading below 1 vol % at 70 degrees C, monodisperse microspheres with smooth surfaces and narrow diameters were successfully obtained. With a DVB loading of 2 vol % and by observing the shapes of particles obtained with three different temperature(60, 70, and 80 degrees C), we found that more spherical particles were obtained at higher temperatures and pumpkin-like particles were obtained at lower temperatures. No significant differences in morphology or the coefficient of variation (CV) of the particles were obtained for different initiator loadings, whereas the particle diameters could be increased with increased initiator concentrations. (2) In order to obtain a better understanding of the formation mechanism of these particles, time-dependent experiments, for the first time, were conducted in a hydrophobic monomer system. By tracing the whole polymerization process, some important results were found. First, with the polymerization time at 70 degrees C, the particle diameters were found to increase from 800 nm to 3.0 microm, the CV displayed a decrease, and the amount of spheres and the spherical evenness of the particle surfaces improved. Second, by quantitatively calculating the particle number from the yields and diameters data, it is found that starting from 3.1% yield or two hours reaction time the total amount of particles in the system is almost a constant (about 9.6 x 10 (8)/L), which means that no homocoagulation occurred and no new particles were generated after nucleation, and there is a linear relation between cubic diameters and yields. These two results give us a distinct impression that particle growth almost comes from capturing of newly formed oligomers. Based on the above results, a scheme for the particle formation is proposed, which shows that that pumpkin-like particles are caused by a prolonged nucleation including the homocoagulation of primary nuclei. The growth of the particles includes two modes, an in situ surface polymerization of monomer and the adsorption of PDVB-55 oligomers. The differences between results in acetonitrile and in acetic acid (higher yields, smaller size, not spherical but pumpkin-like particles in acetic acid) were due to the lower solubilizability of acetic acid which is the so-called proton-containing solvent with the hydrogen bonding structure.  相似文献   

16.
The polymer microspheres were synthesized by dispersion copolymerization of divinylbenzene (DVB) with two vinylbenzyl-terminated poly(ethylene glycol methylether) (PEG)/poly(t-butyl methacrylate) (PBMA) macromonomer blends in methanol. In these systems of two macromonomer blends as the emulsifier, the polymer microspheres formed had a very narrow particle size distribution. Two macromonomers formed comicelles with DVB monomer and acted not only as the comonomer but also as the stabilizer. Such polymer microspheres were stabilized sterically with two-component grafted chains, such as PEG and PBMA, in methanol.  相似文献   

17.
通过反相浓乳液聚合方法制备了系列聚苯乙烯/二乙烯基苯(PS/DVB)泡孔聚合物.水作为分散相,其分散相体积分数可达90%;苯乙烯单体作为连续相,聚合后构成PS/DVB泡孔聚合物的结构骨架.用扫描电镜系统研究了乳化剂的浓度、分散相体积分数、添加不同沸点的溶剂等对泡孔聚合物断面形态的影响,并考察了泡孔聚合物对水和柴油的吸附情况.结果表明,不同工艺条件下可以制备出不同孔径的泡孔聚合物,加入不同沸点溶剂使得泡孔壁也形成了多孔结构.  相似文献   

18.
采用4-氯甲基苯乙烯(VBC)为单体,二乙烯基苯为交联剂(DVB),以磁性γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)修饰硅胶微球为核,在偶氮二异丁腈(AIBN)引发下,以甲苯和聚乙二醇2000的混合溶液(质量比1∶2)为联合致孔剂,原位聚合制备了磁性聚苯乙烯-氯甲基苯乙烯材料(Fe3O4@Si O2@DVBVBC)。通过傅立叶红外光谱(FT-IR)、X-射线衍射(XRD)和氮气物理吸附对该材料的结构和组成特性进行了表征。以蒽为考察对象,对制备材料的吸附性能进行了考察,发现单体和交联剂的质量比对材料的吸附能力影响较大。当单体和交联剂的质量比为1∶4时,对蒽的吸附性能最佳。材料的孔结构会影响吸附平衡时间。制备的材料对蒽能够在30 min内达到吸附平衡且吸附率达95%。该材料对多环芳烃化合物的吸附主要依靠疏水作用。吸附动力学研究表明,材料对蒽的吸附性能对准一级动力学方程具有较好的拟合程度。采用2 mL乙腈涡旋15 min可将99%的蒽洗脱下来。  相似文献   

19.
采用二乙烯基苯-55(DVB-55)和乙二醇二甲基丙烯酸酯(EGDMA)作为混合交联剂,乙腈为溶剂,偶氮二异丁腈(AIBN)为引发剂,以甲基丙烯酸为功能单体采用沉淀聚合法合成了单分散或窄分散的、表面具有羧基的交联聚合物微球,所得微球的粒径变化范围为0.6~3.8μm.通过调节交联剂DVB-55和EGDMA的投料比,可以对微球的粒径、粒径分布、产率、热稳定性以及表面官能团含量进行有效控制.文中对混合交联剂DVB-55与EGDMA比例的改变对微球的粒径、粒径分布以及产率的影响机理给出了理论解释;对DVB和EGDMA的兼容性研究表明,制备的三元聚合物微球的核拥有比投料比稍多的DVB单元,而微球的外层则以在预聚混合物中占更大比例的交联剂为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号