首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Acetti D  Brenna E  Fronza G  Fuganti C 《Talanta》2008,76(3):651-655
We determined the D/H isotope ratios of some ibuprofen and naproxen samples by (2)H NMR spectroscopy. Some of these values were found to be useful for collecting hints on the synthetic procedures employed to prepare these drugs. Site-specific isotope ratio analysis shows great potentials in the fight against patent infringement.  相似文献   

2.
Membranes made from three specifically deuterium-labeled ether-linked bolalipids, [1',1',20',20'-2H4]C20BAS-PC, [2',2',19',19'-2H4]C20BAS-PC, or [10',11'-2H2]C20BAS-PC, were analyzed by 2H NMR spectroscopy. Unlike more common monopolar, ester-linked phospholipids, C20BAS-PC exhibits a high degree of orientational order throughout the membrane and the sn-1 chain of the lipid initially penetrates the bilayer at an orientation different from that of the bilayer normal, resulting in inequivalent deuterium atoms at the C1 position. The approximate hydrophobic layer thickness and area per lipid are 18.4 A and 60.4 A2, respectively, at 25 degrees C, and their respective thermal expansion coefficients are within 20% of the monopolar phospholipid, DLPC.  相似文献   

3.
The use of 2H NMR spectroscopy as a tool for the analysis of enantiomeric purity is reported. Enantiopure isotopically chiral substrates bearing a monodeuterated methylene unit were prepared; introduction of an additional asymmetric center leads to diastereomers which can be distinguished by 2H NMR on a standard spectrometer. The assays allow for simple semiquantitative analysis of asymmetric transformations.  相似文献   

4.
Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state (2)H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed (2)H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures. Hydrophobic matching explains the occurrence of raftlike domains in cellular membranes at intermediate cholesterol concentrations but not saturating amounts of cholesterol.  相似文献   

5.
High-resolution solid-state (2)H MAS NMR studies of the α and γ polymorphs of fully deuterated glycine (glycine-d(5)) are reported. Analysis of spinning sideband patterns is used to determine the (2)H quadrupole interaction parameters, and is shown to yield good agreement with the corresponding parameters determined from single-crystal (2)H NMR measurements (the maximum deviation in quadrupole coupling constants determined from these two approaches is only 1%). From analysis of simulated (2)H MAS NMR sideband patterns as a function of reorientational jump frequency (κ) for the -N(+)D(3) group in glycine-d(5), the experimentally observed differences in the (2)H MAS NMR spectrum for the -N(+)D(3) deutrons in the α and γ polymorphs is attributed to differences in the rate of reorientation of the -N(+)D(3) group. These simulations show severe broadening of the (2)H MAS NMR signal in the intermediate motion regime, suggesting that deuterons undergoing reorientational motions at rates in the range κ ≈ 10(4)-10(6) s(-1) are likely to be undetectable in (2)H MAS NMR measurements for materials with natural isotopic abundances. The (1)H NMR chemical shifts for the α and γ polymorphs of glycine have been determined from the (2)H MAS NMR results, taking into account the known second-order shift. Further quantum mechanical calculations of (2)H quadrupole interaction parameters and (1)H chemical shifts reveal the structural dependence of these parameters in the two polymorphs and suggest that the existence of two short intermolecular C-H···O contacts for one of the H atoms of the >CH(2) group in the α polymorph have a significant influence on the (2)H quadrupole coupling and (1)H chemical shift for this site.  相似文献   

6.
Analysis of the 1H NMR spectra of several monothiocarbonohydrazones, some of them synthesized for the first time, shows that they exist as two structural isomers. Whereas, in general, the derivatives of aromatic aldehydes conform to a linear structure, the aliphatic carbonyl derivatives conform to heterocyclic or linear structures, depending on the size of the substituent groups. This dual behaviour is explained in terms of extended conjugation and steric hindrance.  相似文献   

7.
Probing paeonol-pluronic polymer interactions by 1H NMR spectroscopy   总被引:1,自引:0,他引:1  
By using a combination of 1H NMR spectroscopy, two-dimensional heteronuclear single-quantum coherence-resolved (1)H{(13)C} and homonuclear rotating-frame Overhauser enhancement NMR correlation experiments with diffusion ordered spectroscopy (DOSY), the location and distribution of a hydrophobic drug, paeonol, have been established with respect to the methyl groups of the poly(ethylene oxide)-poly(propylene oxide) -poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer. The interaction between them is adjustable according to the different temperature-dependent hydrophilicities or hydrophobicities of the triblock copolymer components. On the other hand, such interactions influence the self-assembly properties of the block copolymer amphiphiles in solution. The amount of anhydrous methyl groups of PPO segments shows an increase with increasing paeonol concentration. It was also demonstrated that the shell-crosslinking of the Pluronic polymer has an effect in increasing the amount of anhydrous methyl groups and thus increasing the hydrophobicity of Pluronic micelles. This might be the deeper reason underlying the increase in drug-loading capacity and prolongation in release time of Pluronic micelles for drug delivery after the shell-crosslinking. Changes in self-diffusion coefficients of paeonol with varying copolymer concentrations and types were also determined by the diffusion-based NMR DOSY technique, and values of K(a), DeltaG, and n were calculated.  相似文献   

8.
ClPbis11BB and Pbis11BB, two banana-shaped mesogens differing by a chlorine substituent on the central phenyl ring, show a nematic and a B2 phase, respectively. To obtain information on the structural features responsible for their different mesomorphic behavior, a study of the preferred conformations of these mesogens has been performed by NMR spectroscopy in two nematic media (Phase IV and ZLI1167), which should mimic the environment of the molecules in their own mesophases, avoiding problems of sample alignment by a magnetic field. To this aim, 2H NMR experiments have been performed on selectively deuterated isotopomers of ClPbis11BB and Pbis11BB and of two parent molecules, ClPbisB and PbisB, assumed as models in previous theoretical and experimental conformational studies. We found that only a limited number of conformations is compatible with experimental data, often very different from those inferred from theoretical calculations in vacuo, indicating a strong influence of the liquid crystalline environment on molecular conformation. No significant differences between chlorinated and non-chlorinated molecules were found, this suggesting that chlorine does not change the molecular conformational equilibrium, as previously proposed.  相似文献   

9.
10.
1H NMR spectroscopy and the PANIC program for obtaining calculated spectra were used to show that the Z-configuration of the C=C bond is retained in the conversions of 2Z-butene-1,4-diol to the corresponding monobromide and monochloride and in the reaction of this monobromide with amylmagnesium bromide in the presence of the Kochi reagent (Li2CuCl4) and with the tert-butylimine of acetaldehyde.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1180–1182, May, 1990.  相似文献   

11.
Polyunsaturated lipids in cellular membranes are known to play key roles in such diverse biological processes as vision, neuronal signaling, and apoptosis. One hypothesis is that polyunsaturated lipids are involved in second messenger functions in biological signaling. Another current hypothesis affirms that the functional role of polyunsaturated lipids relies on their ability to modulate physical properties of the lipid bilayer. The present research has employed solid-state 2H NMR spectroscopy to acquire knowledge of the molecular organization and material properties of polyunsaturated lipid bilayers. We report measurements for a homologous series of mixed-chain phosphatidylcholines containing a perdeuterated, saturated acyl chain (n:0) at the sn-1 position, adjacent to docosahexaenoic acid (DHA, 22:6omega3) at the sn-2 position. Measurements have been performed on fluid (L(alpha))-state multilamellar dispersions as a function of temperature for saturated acyl chain lengths of n = 12, 14, 16, and 18 carbons. The saturated sn-1 chains are therefore used as an intrinsic probe with site-specific resolution of the polyunsaturated bilayer structure. The 2H NMR order parameters as a function of acyl position (order profiles) have been analyzed using a mean-torque potential model for the chain segments, and the results are discussed in comparison with the homologous series of disaturated lipid bilayers. At a given absolute temperature, as the sn-1 acyl length adjacent to the sn-2 DHA chain is greater, the order of the initial chain segments increases, whereas that of the end segments decreases, in marked contrast with the corresponding disaturated series. For the latter, the order of the end segments is practically constant with acyl length, thus revealing a universal chain packing profile. We find that the DHA-containing series, while more complex, is still characterized by a universal chain packing profile, which is shifted relative to the homologous saturated series. Moreover, we show how introduction of DHA chains translates the order profile along the saturated chains, making more disordered states accessible within the bilayer central region. As a result, the area per lipid headgroup is increased as compared to disaturated bilayers. The systematic analysis of the 2H NMR data provides a basis for studies of lipid interactions with integral membrane proteins, for instance in relation to characteristic biological functions of highly unsaturated lipid membranes.  相似文献   

12.
High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.  相似文献   

13.
The stereochemistry of various pairs of isomeric 2-cyclohexen-1-ylidenecyanoacetates was assigned using 1H NMR spectroscopy. The isomers with the γ-methylene or the γ-vinyl protons cis to the carbalkoxy group were found to have the signals of these protons at approximately 0.3 ppm and 1 ppm, respectively, downfield relative to their geometrical isomers or the corresponding 2-cyclohexen-1-ylidenemalononitriles. The observation regarding the γ-vinyl proton proved useful for the assignment of configuration to cyclohex-enylidenecyanoacetates derived form cholest-4-en-3-one. The large and constant downfield shift (c. 1 ppm) of the γ-vinyl proton when cis to the ester group results from the rigid cyclohexenylidenecyanoacetate system, in which the vinylic proton can approach more closely to the magnetically anisotropic ester carbonyl group.  相似文献   

14.
A complete Deuterium NMR study performed on partially deuterated liquid crystalline carbosilane dendrimer is here reported. The dendrimer under investigation shows a SmA phase in a large temperature range from 381 to 293 K, and its mesophasic properties have been previously determined. However, in this work the occurrence of a biphasic region between the isotropic and SmA phases has been put in evidence. The orientational order of the dendrimer, labeled on its lateral mesogenic units, is here evaluated in the whole temperature range by means of (2)H NMR, revealing a peculiar trend at low temperatures (T < 326 K). This aspect has been further investigated by a detailed analysis of the (2)H NMR spectral features, such as the quadrupolar splitting, the line shape, and the line-width, as a function of temperature. In the context of a detailed NMR analysis, relaxation times (T(1) and T(2)) have also been measured, pointing out a slowing down of the dynamics by decreasing the temperature, which determines from one side the spectral changes observed in the NMR spectra, on the other the observation of a minimum in the T(1).  相似文献   

15.
On the basis of an analysis of the changes in the chemical shifts of the signals in the1H and13C NMR spectra on the pyrimidotriazinedione and trifluoric acid concentrations in CDCl3 it was established that the protonation of rheumycin and fervenulin takes place at the N(2) atom, whereas the protonation of isofervenulin takes place competitively at the N(1), N(2), and O(6) atoms. The equilibrium constants of the investigated protonation processes were measured.A study of the chemical peculiarities of the behavior of Ia, b in aqueous acidic media (H2O-HCl, D2O-DCl) was described in [6].Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1532–1538, November, 1988.  相似文献   

16.
The solubility of two partially deuterated thioindigo dopants in a smectic liquid crystal host was evaluated by variable temperature 2H NMR spectroscopy and polarized microscopy. 2H NMR spectra showed that the dopant (±)-6,6'-bis(2-octyloxy)-5,5-dinitrothioindigo-d 6 forms a homogeneous solution with the smectic phases of the liquid crystal host (±)-4-(4-methylhexyloxy)phenyl 4-decyloxybenzoate (PhB) up to its saturation point of 3 mol %. These results are consistent with polarized microscopy observations of the dopant crystallizing out of solution upon reaching a concentration of 3 mol %. On the other hand, 2H NMR spectra of (±)-5,5'-dichloro-6,6'-bis(2-octyloxy)thioindigo-d 6 dissolved in PhB showed evidence of a partitioning of the solution between smectic and isotropic microdomains, which increases with increasing dopant concentration—from 1.2 to 9.1 mol %. To a large extent, this smectic/isotropic microphase separation could not be detected by polarized microscopy. These results suggest that 2H NMR spectroscopy can provide a more accurate determination of the occurrence and extent of microphase separation in doped liquid crystal samples.  相似文献   

17.
A recently proposed two-dimensional (2)H NMR experiment is used to measure the (2)H (spin I=1) quadrupolar and paramagnetic shift anisotropy interactions in powdered CuCl(2).2D(2)O as a function of temperature. The principal components of the quadrupolar and paramagnetic shift anisotropy tensors and the Euler angles describing the orientations of the tensors in the molecular frame are determined at each temperature. For this purpose an analytical approach is introduced to extract desired parameters from motionally averaged two-dimensional line shapes where the averaging is introduced by rapid 180 degrees flips around C(2) axes of D(2)O molecules. This approach can be readily applied to study various materials containing water of crystallization. It is also clearly shown that the rapid continuous rotation of D(2)O molecules around their C(2) axes is not taking place in the studied solid in the range of temperatures between 209 and 344 K. Once the paramagnetic shift anisotropy of a deuterium atom is measured accurately it is used to estimate the distance between deuterium and the nearest copper atom bearing an unpaired electron. Excellent agreement is found between structural parameters obtained in this study and those provided by neutron and x-ray diffraction, showing that the paramagnetic shift anisotropy is a sensitive probe of distances in paramagnetic solids.  相似文献   

18.
Reductive activation of O(2) by H(2) with rhodium terpyridine complexes in H(2)O and CH(3)CN is described and the mechanism is fully elucidated. The rhodium complex extracts electrons from H(2) and reductively activates O(2) to form a peroxo active intermediate. This intermediate is able to oxidise triphenyl phosphine to triphenyl phosphine oxide. A model system constructed in CH(3)CN provides isolable analogues of catalytic intermediates in H(2)O, allowing a detailed look at each step in the catalytic cycle.  相似文献   

19.
The 1H and 13C NMR spectra of 9-acridinone and its five derivatives dissolved in CDCl3, CD3CN and DMSO-d6 were measured in order to reveal the influence of the constitution of the compounds and features of the solvents on chemical shifts and 1H-1H coupling constants. Experimental data were compared with theoretically predicted chemical shifts, on the GIAO/DFT level of theory, for DFT (B3LYP)/6-31G∗∗ optimized geometries of molecules—also for four other 9-acridinones. This comparison helped to ascribe resonance signals in the spectra to relevant atoms and enabled revelation of relations between chemical shifts and physicochemical features of the compounds. It was found that experimentally or theoretically determined 1H and 13C chemical shifts of selected atoms correlate with theoretically predicted values of dipole moments of the molecules, as well as bond lengths, atomic partial charges and energies of HOMO.  相似文献   

20.
The prediction of the absolute configuration of alpha-chiral carboxylic acids from the 1H NMR spectra of their esters with (R)- and (S)-ethyl 2-hydroxy-2-(9-anthryl) acetate [(R)- and (S)-9-AHA, 5] is discussed. Low-temperature NMR experiments, MM, semiempirical, and aromatic shielding effect calculations allowed the identification of the main conformers and showed that, in all esters studied, conformer ap is the most stable. A simple model for the assignment of the absolute configuration from NMR data is presented, and its reliability is corroborated with acids 6-31 of known absolute configuration. In addition to 5, other auxiliary reagents with open (32-38) and cyclic (39-42) structures have also been studied. trans-(+)- and (-)-2-phenyl-1-cyclohexanol (41) was found to be particularly efficient and produced delta delta RS values similar to those of 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号