首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The synthesis and characterization of palladium(II) and platinum(II) complexes of isomeric bidentate 2-pyridyl-1,2,3-triazole “click” ligands is reported. The complexes have been fully characterized by elemental analysis, HRESI-MS, IR, UV–Vis, 1H and 13C NMR spectroscopy. Additionally, the molecular structures of the Pd(II) and Pt(II) complexes of the 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine ligand are confirmed by X-ray crystallography. Solution studies indicate the 2-(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine ligand forms more stable complexes with Pd(II) and Pt(II) than the isomeric 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine ligand.  相似文献   

2.
Readily synthesised and functionalised di-1,2,3-triazole "click" ligands are shown to self-assemble into coordinatively saturated, quadruply stranded helical [Pd(2)L(4)](BF(4))(4) cages with Pd(II) ions. The cages have been fully characterised by elemental analysis, HR-ESMS, IR, (1)H, (13)C and DOSY NMR, DFT calculations, and in one case by X-ray crystallography. By exploiting the CuAAC "click" reaction we were able to rapidly generate a small family of di-1,2,3-triazole ligands with different core spacer units and peripheral substituents and examine how these structural modifications affected the formation of the [Pd(2)L(4)](BF(4))(4) cages. The use of both flexible (1,3-propyl) and rigid (1,3-phenyl) core spacer units led to the formation of discrete [Pd(2)L(4)](BF(4))(4) cage complexes. However, when the spacer unit of the di-1,2,3-triazole ligand was a 1,4-substituted-phenyl group steric interactions led to the formation of an oligomeric/polymeric species. By keeping the 1,3-phenyl core spacer constant the effect of altering the "click" ligands' peripheral substituents was also examined. It was shown that ligands with alkyl, phenyl, electron-rich and electron-poor benzyl substituents all quantitatively formed [Pd(2)L(4)](BF(4))(4) cage complexes. The results suggest that a wide range of functionalised palladium(II) "click" cages could be rapidly generated. These novel molecules may potentially find uses in catalysis, molecular recognition and drug delivery.  相似文献   

3.
New substituted 3-((1H-1,2,3-triazol-1-yl)methyl)-5-arylisoxazoles (aryl?=?Ph, p-Tol) and 2-(5-phenylisoxazol-3-yl)-5-(2-(1-((5-(p-tolyl)isoxazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)ethyl)-1,3,4-oxadiazole were synthesized by means of click-chemistry procedures. The obtained compounds were used as ligands in preparation of palladium(II) complexes, and the latter proved to be high-turnover-number catalysts for CC cross-coupling reactions under Green Chemistry conditions. One of the ligands was structurally characterized by single crystal X-ray diffraction, and the structure of complexes was determined by 1H, 13C, 15N NMR spectroscopy and quantum-chemical modeling.  相似文献   

4.
By 1,3-dipolar addition of 1-azido(4-amino-1,2,5-oxadiazol-3-yl)aldoxime to propargyl alcohol and phenylacetylene bicyclic 4-amino-1,2,5-oxadiazol-3-yl(4-R-1,2,3-triazol-1-yl)ketoximes were obtained which in reaction with acetic anhydride afforded the corresponding O-acyl derivatives. Diazotization of 4-amino-1,2,5-oxadiazol-3-yl(4-R-1,2,3-triazol-1-yl)ketoximes furnished 4-azido derivatives. The treatment of 4-amino-1,2,5-oxadiazol-3-yl(4-hydroxymethyl-1,2,3-triazol-1-yl)ketoxime with SOCl2 resulted in 4-amino-1,2,5-oxadiazol-3-yl(4-chloromethyl-1,2,3-triazol-1-yl)ketoxime, whose chlorine atom was readily replaced by azide ion affording 4-amino-1,2,5-oxadiazol-3-yl(4-azidomethyl-1,2,3-triazol-1-yl)ketoxime.  相似文献   

5.
We demonstrate the use of a Cu(I) catalyzed "Click" reaction in the synthesis of novel ligands for spin crossover complexes. The reaction between azides and alkynes was used to synthesize the reported tripodal ligand tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine, TBTA, and the new ligands tris[(1-cyclohexyl-1H-1,2,3-triazol-4-yl)methyl]amine, TCTA, and tris[(1-n-butyl-1H-1,2,3-triazol-4-yl)methyl]amine, TBuTA. Reactions of TBTA with Co(ClO(4))(2) lead to complexes of the form [Co(TBTA)(CH(3)CN)(3)](ClO(4))(2), 1, and [Co(TBTA)(2)](ClO(4))(2), 2, where complex formation can be controlled by the metal/ligand ratio and the complexes 1 and 2 can be chemically and reversibly switched from one form to another in solution resulting in coordination ambivalence. The benzyl substituents of TBTA in 2 show intramolecular C-H-π T-stacking that generates a chemical pressure to stabilize the low spin (LS) state at lower temperatures. The structural parameters of 2 are consistent with a Jahn-Teller active LS Co(II) (elongation) ion showing four short and two long bonds. 2 shows spin-crossover (SCO) behavior in the solid state and in solution with a high T(0) close to room temperature which is driven by the T-stacking. 1 remains high spin (HS) between 2 and 400 K. Reversible chemical switching is observed between 1 and 2 at room temperature, with an accompanying change in the spin state from HS to LS. The importance of the intramolecular T-stacking in driving the SCO behavior is proven by comparison with two analogous compounds that lack an aromatic substituent and remain HS down to very low temperatures.  相似文献   

6.
Transition Metal Chemistry - The structures of new p-cymene Ru(II) complexes with 2-(1-methyl-1H-1,2,4-triazol-3-yl)pyridine and 2-(1-methyl-1H-1,2,4-triazol-5-yl)pyridine were established based on...  相似文献   

7.
A series of zinc complexes of the general formula {[ZnCl(ArN=C(An)-C(An)=NAr)](+)}(2)[Zn(2)Cl(6)](2-) (where Ar = 2-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl 2a, 2-(1-(1-phenylethyl)-1H-1,2,3-triazol-4-yl)phenyl 2b, 2-(1-phenyl-1H-1,2,3-triazol-4-yl)phenyl 2c; An = acenaphthene backbone) were prepared by the condensation of acenaphthenequinone with the corresponding o-triazolyl-substituted anilines (2-(1-benzyl-1H-1,2,3-triazol-4-yl)aniline 1a, 2-(1-(1-phenylethyl)-1H-1,2,3-triazol-4-yl)aniline 1b, 2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline 1c) which were formed by the copper(I)-catalyzed Huisgen[3+2] dipolar cycloaddition between 2-ethynylaniline and the corresponding azides in high yields, using anhydrous ZnCl(2) as the metal template, in boiling glacial acetic acid. Zinc complexes of the type [ZnCl(ArN=C(An)-C(An)=NAr)](+)[ZnCl(3)(NCCH(3))](-) (4a-c) were synthesized by crystallisation of the corresponding complexes 2a-c in acetonitrile, at -20 °C. After removal of zinc dichloride from complexes 2a-c by the addition of potassium oxalate, in dichloromethane, the tetradentate N,N,N,N-chelating α-diimine ligands of the type ArN=C(An)-C(An)=NAr (5a-c) were obtained. The new ligand precursors and zinc complexes were characterised by elemental analysis, (1)H and (13)C{(1)H} NMR spectroscopy, two-dimensional NMR spectroscopy, and X-ray diffraction. Reaction of the ligand precursors 5a-c with [NiBr(2)(DME)], in dichloromethane, gave nickel complexes of the type [NiBr(2)(ArN=C(An)-C(An)=NAr)] (6a-c). The results of single crystal X-ray diffraction characterisation and magnetic susceptibility measurements demonstrated that nickel complexes 6a-c possess octahedral geometries around the nickel atoms with variable configurations, the Br atoms of which can be ionized when dissolved in methanol. In preliminary catalytic tests, complexes 6a-c revealed to be active as catalysts for the polymerisation of norbornene and styrene, when activated by cocatalyst MAO. The characterisation of the polymers by (1)H and (13)C{(1)H} NMR spectroscopy, gel permeation chromatography/size-exclusion chromatography (GPC/SEC) revealed that these polymers were formed by a coordination addition mechanism.  相似文献   

8.
A series of heteroleptic copper(I) complexes incorporating amido-triazole and diphosphine ligands, [Cu(I)(N-phenyl-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (1), [Cu(I)(N-(4-methylphenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (2), [Cu(I)(N-(4-methoxyphenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (3), [Cu(I)(N-(4-chlorophenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (4), [Cu(I)(2,6-dimethyl-N-[2-(1-phenyl-1H-1,2,3-triazol-4-yl)phenyl]aniline)(dppb)] (5), [Cu(I)(2,6-dimethyl-N-[2-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl]aniline)(dppb)] (6), (dppb = 1,2-bis(diphenylphosphino)benzene), have been prepared. The complexes adopt a distorted tetrahedral geometry in the solid state with the amido-triazole ligand forming a six-member ring with the Cu(I) ion. The complexes exhibit long-lived photoluminescence with colors ranging from yellow to red-orange in the solid state, in frozen glass at 77 K, and in fluid solution with modest quantum yields of up to 0.022. Electrochemically, complexes 1-4 show irreversible oxidation waves while 5 and 6 are characterized by quasi-reversible oxidations as determined by cyclic voltammetry. For 1-4, the emission energy and oxidation potential are found to vary linearly with the Hammett parameter σ(p) of the substituent in the para position of the amido ligand, while in 5 and 6, large differences in emission are observed because of the nature of N3 substitution in the triazole ring. Density functional theory calculations have been performed on the singlet ground states (S(o)) of all complexes at the BP86/6-31G(d) level to assist in assignment of the excited states. On the basis of both experimental and computational results, we have assigned the excited states as intraligand + metal-to-ligand charge transfer (3)(ILCT+MLCT) or ligand-to-ligand charge transfer mixed with MLCT (3)(MLCT +LLCT) in these complexes.  相似文献   

9.
《Tetrahedron letters》2017,58(37):3643-3645
A series of glucosylated mono- and di-(1H-1,2,3-triazol-4-yl)pyridines were prepared from glucosyl azides and 2-ethynyl and 2,6-diethynyl pyridine via Click reaction. Glucosylation of the silver salt of 4-hydroxy-2,2′-bipyridine with acetobromoglucose afforded the corresponding glucosylated 2,2′-bipyridine. Treatment of five examples of the latter pyridine ligands with [cis-Ru(bipy)2Cl2], [Ru(tpy)Cl3] or [Pd(COD)Cl2] gave the corresponding ruthenium(II) and palladium(II) complexes in 62%-quantitative yield.  相似文献   

10.
16-(1-R-1,2,3-Triazol-4-ylethyl)-, 16-(1-R-1,2,3-triazol-4-ylmethoxymethyl)-, and 16-{2-(1-R-1,2,3-triazol-4-yl)-1-[(1-R-1,2,3-triazol-4-ylmethoxy)ethyl]}-substituted derivatives of methyl lambertianate were synthesized by 1,3-cycloaddition of labdanoid alkynes with azides. The compounds obtained possess considerable cytotoxicity toward the human tumor cell lines CEM-13, MT-4, and U-937. The most active compound, methyl 16-(2-{2-[(1-benzyl-1H-1,2,3-triazol-4-yl)acetyl]furan-3-yl}ethyl)lambertianate, was found to inhibit the viability of the tumor cells by 50% (CCID50) in the concentration of 7–12 μmol L?1.  相似文献   

11.
以2-溴甲基吡啶氢溴酸盐和叠氮化钠为原料,合成中间体2-叠氮甲基吡啶(1);对羟基苯甲醛和溴丙炔经取代反应合成中间体4-(丙-2-炔基丙氧基)苯甲醛(2); 2与1经点击反应制得关键中间体BPT(3); 3与罗丹明B酰肼经还原胺化反应得罗丹明类荧光探针,其结构经1H NMR, IR和元素分析表征。  相似文献   

12.
Transition Metal Chemistry - Four new Cu complexes bearing triazolylidene ligands 1-(R)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium-5-yl: R?=?phenyl (2a), mesitylenyl (2b), propyl (2c),...  相似文献   

13.
The effect of metal coordination of 2-(1-(9-anthryl)methyl-1,2,3-triazol-4-yl)-6-(1-n-octyl-1,2,3-triazol-4-yl)pyridine (2) on the emission of the appended anthryl group was investigated in acetonitrile. The tridentate 2,6-bis(1,2,3-triazol-4-yl)pyridyl ligand included in 2 is referred herein as ‘clickate’. Titrating zinc(II) perchlorate or zinc(II) chloride into the solution of fluorescent ligand 2 results in quenching, which is attributed to the formation of a dark 1:1 ZnII complex of 2. Frontier molecular orbital analysis and cyclic voltammetric data support the occurrence of photoinduced electron transfer from the excited state of the anthryl group to the ZnII-bound clickate moiety, which relaxes the excited fluorophore non-radiatively, i.e. quenches fluorescence. Fluorescence quenching of clickate 2 upon forming the PbII complex was also observed. The ZnII/PbII-coordination chemistry of clickate was characterised via X-ray crystallography, isothermal titration calorimetry, 1H NMR spectroscopy and absorption spectroscopy using the symmetrically substituted clickate 2,6-bis(1-n-octyl-1,2,3-triazol-4 yl)pyridine (1).  相似文献   

14.
By cycloaddition of arylazides to acetylacetone are obtained derivatives of 1,2,3-triazole. In the reaction of 1-[5-methyl-1-(R-phenyl)-1H-1,2,3-triazol-4-yl] ethanones (IIa–IIe) and 1-[4-(4-R-5-methyl-1H-1,2,3-triazol-1-yl)phenyl] ethanones (VIIa-VIIe) with isatin are obtained 2-[1-(R-phenyl)-5-methyl-1H-1,2,3-triazol-4-yl]-4-quinolinecarboxylic acids (IIIa–IIIe) and 2-[4-(4-R-5-methyl-1H-1,2,3-triazol-1-yl)phenyl] -4-quinolinecarboxylic acids (IXa, IXb), respectively. We found that 1-[5-methyl-1-(R-phenyl)-1H-1,2,3-triazol-4-yl] ethanones (IIa–IIe) readily transform into [5-methyl-1-(R-phenyl)-1H-1,2,3-triazol-4-yl] acetic acids (IVa–IVc) by the method of Wilgerodt-Kindler. The (5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)acetic acid reacts with 5-phenyl-4-amino-4H-1,2,4-triazol-3-thiol affording 6-[(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl) methyl]-3-phenyl[1,2,4] triazolo[3,4-b] [1,3,4] thiadiazole (VI). Original Russian Text ? N.T. Pokhodylo, R.D. Savka, V.S. Matiichuk, N.D. Obushak, 2009, published in Zhurnal Obshchei Khimii, 2009, vol. 79, no. 2, pp. 320–325.  相似文献   

15.
2-, 3-, and 4-[5-(1-Aryl-5-R-1H-1,2,3-triazol-4-yl)-1,3,4-oxadiazol-2-yl]pyridines were synthesized from the corresponding 1-aryl-5-R-1H-1,2,3-triazole-4-carbonyl chlorides and 2-, 3-, and 4-(1H-tetrazol-5-yl)-pyridines.  相似文献   

16.
Russian Journal of General Chemistry - 2-Phenyl-4-{4-[(1-phenyl-1H-1,2,3-triazol-4-yl)methoxy]benzylidene}oxazol-5(4H)-one derivatives were synthesized by click chemistry reactions. Exploration of...  相似文献   

17.
Efficient synthesis of heteroleptic tris-cyclometalated Ir(III) complexes mer-Ir(C(/\)N)(2)(trpy) (trpy = 2-(1H-[1,2,3]triazol-4-yl)pyridine) is achieved by using the Cu(I)-triazolide intermediates formed in "click" reactions as transmetalating reagents. Ligand preparation and cyclometalation of Ir(III) is accomplished in one pot. The robust nature of click chemistry provides opportunities to introduce different functional groups to the cyclometalated system, for example, alkyl, perfluoroalkyl, and aryl moieties. All of the meridional isomers show short-lived phosphorescence at room temperature, both in solution and in the solid state. DFT calculations indicates that the phosphorescence of mer-Ir(C(/\)N)(2)(trpy) is attributed to the (3)MLCT and (3)LC mixed excited states, also supported by the broad spectral shape and hypsochromic shift upon media rigidification. The luminescence efficiency and excited state lifetimes of the cyclometalated complexes can be tuned by varying the substituents on the triazole ring, while the emission color is mainly determined by the phenylpyridine-based ligands. Moreover, the trpy ligand can acquire the N(/\)N chelating mode under selective reaction conditions. mer-Ir(C(/\)N)(2)(trpy) complexes isomerize into cationic [Ir(C(/\)N)(2)(N(/\)N_trpy)](+) species instead of their fac isomers upon heating or UV radiation. This can be explained by the strong trans influence exerted by the phenyl groups. The weakened Ir-C(trpy) bonds are likely to be activated and protonated, leading to the switch of the trpy ligand to a thermodynamically more stable N(/\)N chelating mode.  相似文献   

18.
A series of [Ru(bipy)2L]+ and [Ru(phen)2L]+ complexes where L is 2-[5-(3,4-dimethoxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine (HL1) and 4-(5-pyridin-2-yl-4H-1,2,4-triazol-3-yl)benzene-1,2-diol (HL2) are reported. The compounds obtained have been characterised using X-ray crystallography, NMR, UV/Vis and emission spectroscopies. Partial deuteriation is used to determine the nature of the emitting state and to simplify the NMR spectra. The acid-base properties of the compounds are also investigated. The electronic structures of [Ru(bipy)2L1]+ and Ru(bipy)2HL1]2+ are examined using ZINDO. Electro and spectroelectrochemical studies on [Ru(bipy)2(L2)]+ suggest that proton transfer between the catechol and triazole moieties on L2 takes place upon oxidation of the L2 ligand.  相似文献   

19.
Click chemistry has been utilized to access 2,6-bis(1-aryl-1,2,3-triazol-4-yl)pyridines (BTPs) as versatile extended heteroaromatic building blocks for their exploitation in supramolecular chemistry, in particular foldamer and ligand design. In addition to their high-yielding synthesis using Cu(I)-catalyzed Huisgen-type 1,3-dipolar cycloaddition reactions the formed triazole moieties constitute an integral part of the BTP framework and encode both its pronounced conformational preferences as well as its chelating ability. A diverse set of symmetrical and non-symmetrical BTPs carrying electron-donating and -withdrawing substituents at both terminal aryl and the central pyridine moieties has efficiently been synthesized and could furthermore readily be postfunctionalized with amphiphilic side chains and porphyrin chromophores. In both solution and solid state, the BTP scaffold adopts a highly conserved horseshoe-like anti-anti conformation. Upon protonation or metal coordination, the BTP scaffold switches to the chelating syn-syn conformation. Iron and europium complexes have been prepared, successfully characterized by single-crystal X-ray diffraction analysis, and investigated with regard to their spin state and luminescent properties. The extended heteroaromatic BTP scaffold should prove useful for the design of responsive foldamer backbones and the preparation of new magnetic and emissive materials.  相似文献   

20.
The title compound, O-(E)-1-{1-[(6-chloropyridin-3-yl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl}ethyleneamino-O-ethyl-O-phenylphosphorothioate, has been synthesized via the condensation reaction of 1-{1-[(6-chloropyridin-3-yl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl}ethanone oxime and O-ethyl-O-phenylphosphorochloridothioate in the presence of NaOH powder in refluxing EtOH. Its structure was characterized by (1)H NMR, FTIR, Raman, elemental analysis and X-ray single crystal diffraction. The results of preliminary bioassays indicated that the title compound displays good insecticidal activity. Density functional (DFT) calculations have been carried out for the title compound by using the Becke-Lee-Yang-Parr's three-parameter hybrid functional (B3LYP) method at 6-31G and 6-31G basis sets. The calculated results show that the predicted geometry can well reproduce the structural parameters. The vibrational wave numbers of the title compound were calculated at same level. Predicted vibrational frequencies have been assigned and compared with experimental IR and Raman spectra and they are supported each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号