首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
MeV-proton production from solid targets irradiated by 100-fs laser pulses at intensities above 1x10(20) W cm(-2) has been studied as a function of initial target thickness. For foils 100 microm thick the proton beam was characterized by an energy spectrum of temperature 1.4 MeV with a cutoff at 6.5 MeV. When the target thickness was reduced to 3 microm the temperature was 3.2+/-0.3 MeV with a cutoff at 24 MeV. These observations are consistent with modeling showing an enhanced density of MeV electrons at the rear surface for the thinnest targets, which predicts an increased acceleration and higher proton energies.  相似文献   

2.
3.
4.
We report on the generation and laser acceleration of bunches of energetic deuterons with a small energy spread at about 2 MeV. This quasimonoenergetic peak within the ion energy spectrum was observed when heavy-water microdroplets were irradiated with ultrashort laser pulses of about 40 fs duration and high (10(-8)) temporal contrast, at an intensity of 10(19) W/cm(2). The results can be explained by a simple physical model related to spatial separation of two ion species within a finite-volume target. The production of quasimonoenergetic ions is a long-standing goal in laser-particle acceleration; it could have diverse applications such as in medicine or in the development of future compact ion accelerators.  相似文献   

5.
Explosions of large Xe clusters ( ~ 11,000) irradiated by femtosecond pulses of 850 eV x-ray photons focused to an intensity of up to 10(17) W/cm(2) from the Linac Coherent Light Source were investigated experimentally. Measurements of ion charge-state distributions and energy spectra exhibit strong evidence for the formation of a Xe nanoplasma in the intense x-ray pulse. This x-ray produced Xe nanoplasma is accompanied by a three-body recombination and hydrodynamic expansion. These experimental results appear to be consistent with a model in which a spherically exploding nanoplasma is formed inside the Xe cluster and where the plasma temperature is determined by photoionization heating.  相似文献   

6.
高能电子与超强激光束作用产生的阿秒脉冲列   总被引:1,自引:1,他引:1       下载免费PDF全文
郑君  盛政明  张杰 《物理学报》2005,54(6):2638-2644
利用非线性汤姆孙散射的理论,从理论和数值模拟上研究了单电子在横向穿越高斯激光束束 腰时所辐射的x射线阿秒脉冲列的性质. 主要分析了电子以初始能量γ0=1M eV—100M eV横向穿越激光振幅参数为a0=1—10的高斯光束束腰获得的阿秒辐射脉冲的 时间 和空间性质. 计算表明,辐射呈现脉冲列的形式. 脉冲列的包络宽度取决于激光强度、束腰 的宽度以及入射电子能量. 电子的初始能量比激光强度对电子辐射脉冲的影响更大. 辐射脉 宽、脉冲间隔和脉冲包络宽度都正比于1/γ20,辐射功率正比于 γ60,辐射能 量正比于γ40. 当改变激光振幅a0时,辐射功率正比 于a20、辐射包络中单 个脉冲脉宽正比于1/a0、脉冲之间的间隔正比于a0. 当保持激光强 度不变,而改变光束 束腰半径w0时,辐射的脉冲数量、包络和辐射能量正比于w0. 当 激光功率保 持不变时而改变激光强度和束腰半径时,脉冲包络宽度和最大辐射能量都基本不变. 当激光 振幅参数a0=1,电子初始能量为10MeV时,激光束腰为两个激光波长时,电子 辐 射脉冲包络宽度只有14×10-3τ0(τ0为入 射激光周期),达到几个阿秒的量级. 关键词: 阿秒脉冲 非线性汤姆孙散射 高斯激光光束  相似文献   

7.
We report on rear-side optical self-emission results from ultraintense laser pulse interactions with solid targets. A prompt emission associated with a narrow electron jet has been observed up to aluminum target thicknesses of 400 microm with a typical spreading half-angle of 17 degrees. The quantitative results on the emitted energy are consistent with models where the optical emission is due to transition radiation of electrons reaching the back surface of the target or due to a synchrotron-type radiation of electrons pulled back to the target. These models associated with transport simulation results give an indication of a temperature of a few hundred keV for the fast-electron population.  相似文献   

8.
在强激光与等离子体相互作用研究中,文章作者从实验上首次观测到沿靶面方向发射的高能超热电子束.该电子束只有在等离子体电子密度标长较短的条件下才会出现。数值模拟表明,靶表面电磁场的约束作用是产生这束电子的主要原因。这一结果有助于加深对激光惯性约束聚变快点火实验中的锥靶物理过程的理解,并有潜在的应用前景。  相似文献   

9.
在强激光与等离子体相互作用研究中,文章作者从实验上首次观测到沿靶面方向发射的高能超热电子束.该电子束只有在等离子体电子密度标长较短的条件下才会出现.数值模拟表明,靶表面电磁场的约束作用是产生这束电子的主要原因.这一结果有助于加深对激光惯性约束聚变快点火实验中的锥靶物理过程的理解,并有潜在的应用前景.  相似文献   

10.
We present in this paper a quantitative study of an effect, in which a low-energy free electron is captured and violently accelerated to GeV final kinetic energy by a stationary extra-high-intensity laser beam (Q0 identical witheE/m(e)omegac greater, similar100). The conditions under which this phenomenon can occur, such as the momentum range, incident angle of the incoming electron, the waist width of the laser beam, etc., have been investigated in detail.  相似文献   

11.
12.
A magnetic-dipole vortex is generated in the behind of an ultraintense and ultrashort laser pulse in a near critical density plasma. The vortex is self-sustained by its magnetic field pressure which expels background electrons, and resulting sheath field accelerates electrons to drive high amplitude electric current inside the vortex. The electron energy spectra shows nonthermal distribution with relatively high energy. The vortex is stable for a long period since it is in the electromagnetic equilibrium, whose structure and characteristics are explained by a simple analytical model.  相似文献   

13.
 在超强脉冲激光与固体靶相互作用中,利用光学CCD相机和光学多道分析仪,分别在固体薄膜靶背表面法线方向测量了渡越辐射(TR)积分成像图案和光谱。测量结果显示:TR空间分布图案呈圆环状,而辐射区域有发散角和光强分布;TR光谱在800 nm附近出现尖峰,是激光的基频波,这一现象归因于超热电子束在输运的过程中产生的微束团而引起的相干渡越辐射;如果考虑超热电子的产生和加热机制,共振吸收和真空加热对超热电子都有贡献,其中占主导地位的加热机制则是共振吸收对电子的加热。  相似文献   

14.
在超强脉冲激光与固体靶相互作用中,利用光学CCD相机和光学多道分析仪,分别在固体薄膜靶背表面法线方向测量了渡越辐射(TR)积分成像图案和光谱。测量结果显示:TR空间分布图案呈圆环状,而辐射区域有发散角和光强分布;TR光谱在800 nm附近出现尖峰,是激光的基频波,这一现象归因于超热电子束在输运的过程中产生的微束团而引起的相干渡越辐射;如果考虑超热电子的产生和加热机制,共振吸收和真空加热对超热电子都有贡献,其中占主导地位的加热机制则是共振吸收对电子的加热。  相似文献   

15.
16.
Protons with energies up to 18 MeV have been measured from high density laser-plasma interactions at incident laser intensities of 5x10(19) W/cm(2). Up to 10(12) protons with energies greater than 2 MeV were observed to propagate through a 125 &mgr;m thick aluminum target and measurements of their angular deflection were made. It is likely that the protons originate from the front surface of the target and are bent by large magnetic fields which exist in the target interior. To agree with our measurements these fields would be in excess of 30 MG and would be generated by the beam of fast electrons which is also observed.  相似文献   

17.
This article aims to obtain structural and compositional characteristics of a crystalline silicon surface irradiated by femtosecond laser pulses in SF6, N2, air, and vacuum background atmospheres by performing transmission electron microscopy observation of ??110?? cross-sectional specimens. Conical microstructures covered with defective outer layers were formed in SF6 gas. The elemental sulfur dopants in the surface microstructure, which located in close proximity to defects, were mainly concentrated at the tip region of the microcones, and about several hundred nanometers thick. In N2 atmosphere, the defects produced regularly on the silicon surface were of the same types with those formed in SF6 gas and confirmed to be stacking faults and overlapped twins. Furthermore, silicon crystalline grains with different orientations were observed on the silicon surface irradiated in N2, air, and vacuum atmospheres. Especially, ??-Si3N4 crystalline grains were found to be formed in N2 and air as chemical products when elemental nitrogen exists, and the SiO2 amorphous phase was formed in air by the oxidation effect. Based on these experimental results, the relevant interaction mechanisms between pulsed laser and crystalline silicon were suggested to be mainly attributed to laser-assisted chemical etching and laser ablation, i.e., if volatile silicon compounds can be produced in a reactive gas atmosphere (e.g., SF6), the strong laser-assisted chemical etching dominates over the laser irradiation process. Otherwise, laser ablation is the dominant mechanism such as in N2, air, and vacuum.  相似文献   

18.
Mechanism of terahertz (THz) pulse generation in gases irradiated by ultrashort laser pulses is investigated theoretically. Quasi-static transverse currents produced by laser field ionization of gases and the longitudinal modulation in formed plasmas are responsible for the THz emission at the electron plasma frequency, as demonstrated by particle-in-cell simulations including field ionization. The THz field amplitude scaling with the laser amplitude within a large range is also discussed.  相似文献   

19.
Mechanism of terahertz (THz) pulse generation in gases irradiated by ultrashort laser pulses is investigated theoretically. Quasi-static transverse currents produced by laser field ionization of gases and the longitudinal modulation in formed plasmas are responsible for the THz emission at the electron plasma frequency, as demonstrated by particle-in-cell simulations including field ionization. The THz field amplitude scaling with the laser amplitude within a large range is also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号