首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
严鹏  王向荣 《物理学进展》2011,31(3):161-167
本文介绍微磁动力学领域的一个最新进展,我们的研究发现在磁场驱动下且保持畴结构不变地沿着纳米磁线运动的磁畴壁,其运动源于能量耗散,磁畴壁运动速度正比于能量耗散率。与此同时,我们根据能量守恒原则,给出了磁畴壁速度的一个合理定义,该定义适用于任意的磁畴壁结构。在此定义下,即使磁畴壁没有做刚性运动,我们也能得到磁畴壁运动的瞬时速度和平均速度。我们的结果不仅能重复低磁场下的沃克(Walker)解,还能反映出当磁场高于沃克极限(Walker limit)时速度{磁场的依赖关系,该结果跟数值模拟和实验数据都符合得很好。我们根据微磁动力学研究的这一新进展,最终澄清了一个事实即“磁畴壁质量”这个概念是错误的。  相似文献   

2.
In Taylor-Couette flow the total energy dissipation rate and therefore the drag can be determined by measuring the torque on the system. We do so for Reynolds numbers between Re=7 x 10(4) and Re=10(6) after having injected (i) small bubbles (R=1 mm) up to a volume concentration of alpha=5% and (ii) buoyant particles (rhop/rhol=0.14) of comparable volume concentration. In case (i) we observe a crossover from little drag reduction at smaller Re to strong drag reduction up to 20% at Re=10(6). In case (ii) we observe at most little drag reduction throughout. Several theoretical models for bubbly drag reduction are discussed in view of our findings.  相似文献   

3.
This Letter endeavours to complete an earlier numerical analysis for flow and heat transfer in a viscous fluid over a sheet nonlinearly stretched by extending the investigation in two directions. On one side, the effects of thermal radiation are included in the energy equation, and, on the other hand, the prescribed wall heat flux case (PHF case) is also analyzed. The governing partial differential equations are converted into nonlinear ordinary differential equations by a similarity transformation. The variations of dimensionless surface temperature as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include a nonlinearly stretching sheet, thermal radiation, viscous dissipation and power-law index of the wall temperature parameters, are graphed and tabulated.  相似文献   

4.
5.
To simulate two-dimensional viscous incompressible flows based on a scheme of blob splitting and merging, we developed a vortex method and employed a fast multipole method to speed the computation of velocities. The diffusion of the vortex sheet induced at a solid wall by the no-slip boundary conditions is first modeled according to the analytical solution of Koumoutsakos and then converted into discrete blobs in the vicinity of the wall. To prevent the vorticity from entering the solid body, we introduce a concept residual circulation in a sense that only a partial circulation of the vortex sheet is diffused into the flow field; the rest remains at the wall. Blobs near the wall are thus avoided. Blobs near the wall that might cause large fluctuations in the strength of the vortex sheet are handled similarly. The solver thus developed requires no grid-based remeshing. We applied this solver to simulate the flow induced with an impulsively initiated circular cylinder; the results agree satisfactorily with those of previous experimental and numerical investigations.  相似文献   

6.
In this paper, we numerically investigate energy dissipation caused by traffic in the Nagel-Schreckenberg (NaSch) model with open boundary conditions (OBC). Boundary results in excess energy dissipation. The effects of the stochastic boundary conditions on energy dissipation are discussed. The behaviors of energy dissipation in different traffic phase are distinct. As an order parameter, energy dissipation rate E d characterizes the phase transition behaviors well. It is shown that there is no true free-flow state in nondeterministic NaSch model with OBC. We refer to this non-true free-flow state as quasi-free-flow (QFF) phase in which there are interactions between vehicles caused by stochastic braking but no backward moving jam exists. In the maximum current phase, E d is minimal thus the social payoff is maximal. Energy dissipation profiles in QFF, jammed and maximum current phase are presented. Theoretical analyses are in good agreement with numerical results for the case v max = 1.  相似文献   

7.
The present work deals with the three-dimensional hybrid Cu-Al2O3/water nanofluid flow towards a stretching/shrinking sheet with the presence of velocity slip and convective conditions. A permeable sheet is considered to maintain the shrinking flow through an adequate wall mass suction. The nonlinear governing boundary layer coupled with energy equations are transformed into the ordinary differential equations using similarity transformation. Numerical computations are performed with the aid of boundary value problem solver (bvp4c) in the Matlab software and the results are presented in the tables and graphs. The boundary layer separation occurs in the shrinking flow region. An upsurge of slip and copper nanoparticle volume fraction parameters can increase the range of first and second solutions whereas Biot parameter give zero impact on delaying the boundary layer separation. However, an increase of Biot and slip parameters can boost the heat transfer rate while opposite result is obtained with the augmentation of the copper solid volume fraction. The stability of both solutions are examined, and it is validated that the first (upper branch) solution is more stable than second solution.  相似文献   

8.
The magnetohydrodynamic(MHD) flow induced by a stretching or shrinking sheet under slip conditions is studied.Analytical solutions based on the boundary layer assumption are obtained in a closed form and can be applied to a flow configuration with any arbitrary velocity distributions. Seven typical sheet velocity profiles are employed as illustrating examples. The solutions to the slip MHD flow are derived from the general solution and discussed in detail. Different from self-similar boundary layer flows, the flows studied in this work have solutions in explicit analytical forms. However, the current flows require special mass transfer at the wall, which is determined by the moving velocity of the sheet. The effects of the slip parameter, the mass transfer at the wall, and the magnetic field on the flow are also demonstrated.  相似文献   

9.
The aim of this paper is the investigation of heat transfer regarding the cases of both stretching and shrinking sheets with a sponge-like horizontal wall that allows for mass transpiration. The effects of Prandtl number, radiation and external magnetic field are extensively examined. The Navier-Stokes equations are reduced to partial differential equations, which are eventually become ordinary differential equations and solved analytically. Furthermore, the power-law wall temperature and heat flux boundary conditions are imposed on the boundary layer energy equation for obtaining exact analytical solutions. The results revealed that in both the stretching and shrinking sheet scenarios the thickness of the thermal boundary layer decreases with either increasing of transpiration as well as the Chandrasekhar and Prandtl number numbers or decreasing radiation number. Additionally, the characteristics of the heat transfer regarding a shrinking sheet and those of a stretching sheet are found not to be similar. In fact, a new solution branch appeared which indicates that multiple solutions may emerge under certain circumstances. Finally, by using the present analytical relationships, theoretical guidelines can be given for regulating the procedure.  相似文献   

10.
The design and feasibility of a 1-MW continuous-wave (CW) free electron laser (FEL) oscillator are reviewed. The proposed configuration includes a short-period (Iw~ 1 cm) planar wiggler, a sheet electron beam, a 0.5-1.0-MV thermionic electron gun, a hybrid waveguide/quasi-optical resonator, commercial DC power supplies, and a depressed collector. Cavity ohmic RF losses are estimated to be extremely low (⩽10-100 W/cm2) at 1/MW output power, while thermal heat transfer studies conservatively indicate that wall cooling up to 1500 W/cm2 should be possible. Experiments have convincingly verified theory and simulations which predict that negligible body currents will be achievable with low-emittance low-space-charge sheet beams. High-voltage sheet beam gun design studies indicate that the required beam quality can be achieved with CW compatible devices. The spent beam energy distribution is consistent with highly efficient spent beam energy recovery, and the proposed resonator cavity should provide mode discrimination and beam/RF separation capability  相似文献   

11.
Turbulence, produced by an impulsive spin down from angular velocity Omega to rest of a cube-shaped container, is investigated in superfluid 4He at temperatures 0.08 K-1.6 K. The density of quantized vortex lines L is measured by scattering negative ions. Homogeneous turbulence develops after time t approximately 20/Omega and decays as L proportional, t-3/2. The corresponding energy flux =nu'(kappaL)2 proportional, t-3 is characteristic of quasiclassical turbulence at high Re with a saturated energy-containing length. The effective kinematic viscosity in T=0 limit is nu'=0.003kappa, where kappa=10(-3) cm2 s(-1) is the circulation quantum.  相似文献   

12.
We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5 x 10(4) in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the enstrophy dissipation. The self-organization of the flow is reflected by the transition of the initially Gaussian vorticity probability density function (PDF) towards a distribution with exponential tails. Because of the presence of coherent vortices the pressure PDF become strongly skewed with exponential tails for negative values.  相似文献   

13.
Assuming that different energy dissipation mechanisms are at work along hysteresis, a hysteresis loss subdivision procedure has been proposed, using the induction at maximum permeability (around 0.8 T, in electrical steels) as the boundary between the “low-induction” and the “high-induction” regions. This paper reviews the most important results obtained in 10 years of investigation of the effect of microstructure on these components of the hysteresis loss. As maximum induction increases, the “low-induction loss” increases linearly up to 1.2 T, while the “high-induction loss” is zero up to 0.7 T and then increases as a power law with n=5. Low-induction loss behavior is linearly related to Hc between 0.4 and 1.2 T. Grain size has a larger influence on low-induction losses than on high-induction losses. Texture has a much stronger influence on high loss than on low-induction loss, and it is related to the average magnetocrystalline energy. 6.5%Si steel shows smaller hysteresis loss at 1.5 T than 3.5%Si steel only because of its smaler high-induction component. The abrupt increase in hysteresis loss due to very small plastic deformation is strongly related to the high-induction loss component. These results are discussed in terms of energy dissipation mechanisms such as domain wall movement, irreversible rotation and domain wall energy dissipation at domain nucleation and annihilation.  相似文献   

14.
An investigation is carried out on mixed convection boundary layer flow of an incompressible and electrically conducting viscoelastic fluid over a linearly stretching surface in which the heat transfer includes the effects of viscous dissipation, elastic deformation, thermal radiation, and non-uniform heat source/sink for two general types of non-isothermal boundary conditions. The governing partial differential equations for the fluid flow and temperature are reduced to a nonlinear system of ordinary differential equations which are solved analytically using the homotopy analysis method (HAM). Graphical and numerical demonstrations of the convergence of the HAM solutions are provided, and the effects of various parameters on the skin friction coefficient and wall heat transfer are tabulated. In addition, it is demonstrated that previously reported solutions of the thermal energy equation given in [1] do not converge at the boundary, and therefore, the boundary derivatives reported are not correct.  相似文献   

15.
Thermodynamic equilibrium states are given by the minimum of a convex free energy function with suitable boundary conditions. Nonconvexity may lead to the coexistence of several phases and the classical Gibbs phase rule allows constructing their equilibrium properties (e.g., density or pressure). Within the framework of nonequilibrium thermodynamics, the maximization of energy dissipation (under suitable boundary conditions) can be used as an extremal principle to find stationary states. We show that stationary states generally exist for convex energy dissipation functions and that nonconvexity leads to metastable and unstable states. A geometric argument, similar in spirit to Gibbs' double-tangent construction, yields the stability limits of stationary states. This argument is applied to study a classical problem of materials science, namely the motion of a grain boundary under the influence of solute drag.  相似文献   

16.
The present work is concerned with the effects of viscous dissipation and heat source/sink on a three-dimensional magnetohydrodynamic boundary layer axisymmetric stagnation flow, and the heat transfer of an electrically conducting fluid over a sheet, which shrinks or stretches axisymmetrically in its own plane where the line of the symmetry of the stagnation flow and that of the shrinking (stretching) sheet are, in general, not aligned. The governing equations are transformed into ordinary differential equations by using suitable similarity transformations and then solved numerically by a shooting technique. This investigation explores the conditions of the non-existence, existence and uniqueness of the solutions of the similar equations numerically. It is noted that the range of the velocity ratio parameter, where the similarity solution exists, is increased with the increase of the value of the magnetic parameter. Furthermore, the study reveals that the non-alignment function affects the shrinking sheet more than the stretching sheet. In addition, the numerical results of the velocity profile, temperature profile, skin-friction coefficient, and rate of heat transfer at the sheet are discussed in detail with different parameters.  相似文献   

17.
通过分析显式有限差分格式的数值色散和数值耗散,导出一个适于有限差分格式的通用色散-耗散条件.根据群速度和耗散率之间的物理关系,确定了用以抑制数值解中伪高波数波所需要的适度耗散.在以往发展的低耗散加权基本无振荡格式WENO-CU6-M2上的应用表明,该条件可用作优化线性或非线性有限差分格式的色散和耗散的通用指导准则.此外,满足色散-耗散条件的改进WENO-CU6-M2格式还可选作低分辨率数值模拟,以三维Taylor-Green涡向湍流转捩和自相似能量衰减问题展现了它的这种能力.与经典的动态Smagorinsky亚网格尺度模型相比,在Reynolds数Re=400~3000条件下,无黏和黏性Taylor-Green涡的数值模拟结果均得到明显改善.在保持激波捕捉特性同时,与最新的隐式大涡模拟模型的计算效果相当.   相似文献   

18.
We present a GPU accelerated solver for simulations of bluff body flows in 2D using a remeshed vortex particle method and the vorticity formulation of the Brinkman penalization technique to enforce boundary conditions. The efficiency of the method relies on fast and accurate particle-grid interpolations on GPUs for the remeshing of the particles and the computation of the field operators. The GPU implementation uses OpenGL so as to perform efficient particle-grid operations and a CUFFT-based solver for the Poisson equation with unbounded boundary conditions. The accuracy and performance of the GPU simulations and their relative advantages/drawbacks over CPU based computations are reported in simulations of flows past an impulsively started circular cylinder from Reynolds numbers between 40 and 9500. The results indicate up to two orders of magnitude speed up of the GPU implementation over the respective CPU implementations. The accuracy of the GPU computations depends on the Re number of the flow. For Re up to 1000 there is little difference between GPU and CPU calculations but this agreement deteriorates (albeit remaining to within 5% in drag calculations) for higher Re numbers as the single precision of the GPU adversely affects the accuracy of the simulations.  相似文献   

19.
It is shown how a fairly simple random walk on a lattice provides insight into the nature of hydrodynamic boundary conditions. In a flow parallel to the boundary, collisions of up and downward moving particles induce lateral bulk diffusion. At the wall the model accounts essentially for 1) specular reflection, 2) diffuse reflection and 3) trapping at the surface. The steady state is solved exactly. In the continuum limit the case of stick versus slip boundary conditions is explained in its relation to the interplay of bulk and boundary processes.  相似文献   

20.
We have conducted a high-resolution, two-dimensional direct numerical simulation of Rayleigh-Bénard convection with stress-free and periodic boundary conditions at a Rayleigh (Ra) number of 10(8) and Prandtl (Pr) number of unity. An aspect-ratio three box has been considered. A single cell has been used as the initial condition. First, the flow develops into time-dependent convection with a strong asymmetry and highly convoluted thermal plumes delineating a large-scale circulation. Smaller thermal plumes detach from the boundary layer and extend over the entire cell, creating a local inversion of the temperature gradient adjacent to the boundary layers. Then the conditions leading to the formation of internal waves are fulfilled, as the local Richardson number decreases sufficiently small to cross the linear threshold of Ri=0.25. Together with the strong shear, convective rolls with a Kelvin-Helmholtz wavelike character are produced. The secondary boundary layer itself becomes unstable and produces smaller plumes. At later times, the large-scale circulation is destroyed and the internal waves disappear. A Reynolds number, based on the global scale, of Re=500, is attained at this stage. Only isolated thermal plumes and vortices are present. Thus, internal waves can be generated at finite Prandtl number fluids for sufficiently high Ra in the presence of a large-scale circulation. Spectral analysis reveals that the kinetic energy decays with a logarithmic slope of -3, while the logarithmic slope of the thermal variance has a value of around -5 / 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号