共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the global chirality distribution of the quantum walk on the line when decoherence is introduced either through simultaneous measurements of the chirality and particle position, or as a result of broken links. The first mechanism drives the system towards a classical diffusive behavior. This is used to build new quantum games, similar to the spin-flip game. The second mechanism involves two different possibilities: (a) All the quantum walk links have the same probability of being broken. (b) Only the quantum walk links on a half-line are affected by random breakage. In case (a) the decoherence drives the system to a classical Markov process, whose master equation is equivalent to the dynamical equation of the quantum density matrix. This is not the case in (b) where the asymptotic global chirality distribution unexpectedly maintains some dependence with the initial condition. Explicit analytical equations are obtained for all cases. 相似文献
2.
3.
We study decoherence in a simple quantum mechanical model using two approaches. Firstly, we follow the conventional approach to decoherence where one is interested in solving the reduced density matrix from the perturbative master equation. Secondly, we consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. We show that both methods can accurately predict decoherence time scales. However, the perturbative master equation generically suffers from instabilities which prevents us to reliably calculate the system’s total entropy increase. We also discuss the relevance of the results in our quantum mechanical model for interacting field theories. 相似文献
4.
《Physica D: Nonlinear Phenomena》2004,187(1-4):223-243
We derive an expression for the mean square displacement (MSD) of a particle whose motion is governed by a uniform, periodic, quantum multi-baker map. The expression is a function of both time, t, and Planck’s constant, h, and allows a study of both the long time, t→∞, and semi-classical, h→0, limits taken in either order. We evaluate the expression using random matrix theory as well as numerically, and observe good agreement between both sets of results. The long time limit shows that particle transport is generically ballistic for any fixed value of Planck’s constant. However, for fixed times, the semi-classical limit leads to diffusion. The mean square displacement for non-zero Planck’s constant, and finite time, exhibits a crossover from diffusive to ballistic motion, with crossover time on the order of the inverse of Planck’s constant. We argue that these results are generic for a large class of 1D quantum random walks, similar to the quantum multi-baker, and that a sufficient condition for diffusion in the semi-classical limit is classically chaotic dynamics in each cell. Some connections between our work and the other literature on quantum random walks are discussed. These walks are of some interest in the theory of quantum computation. 相似文献
5.
6.
T.D. Ladd J.R. Goldman F. Yamaguchi Y. Yamamoto 《Applied Physics A: Materials Science & Processing》2000,71(1):27-36
Nuclear magnetic resonance (NMR) quantum computation in a crystal lattice holds more promise for scalability than its solution NMR counterpart, but dephasing is a severe concern. Pulse sequence refocusing can help bring the qubit dephasing time closer to the limit of the intrinsic decoherence time, but the intrinsic transverse relaxation time (T2) and the longitudinal relaxation time (T1) of the crystal must be sufficiently long for a successful implementation. We discuss these time scales and their relation to parameters relevant to quantum computation for several crystal types, discussing in detail the examples of CaF2, MnF2, and CeP. Included in the calculation of coherence times for CeP is the development of spin-wave spectra in a type-1 antiferromagnetic FCC lattice. 相似文献
7.
8.
9.
In this paper, we present a comprehensive analysis of the coherence phenomenon of two coupled dissipative oscillators. The action of a classical driving field on one of the oscillators is also analyzed. Master equations are derived for both regimes of weakly and strongly interacting oscillators from which interesting results arise concerning the coherence properties of the joint and the reduced system states. The strong coupling regime is required to achieve a large frequency shift of the oscillator normal modes, making it possible to explore the whole profile of the spectral density of the reservoirs. We show how the decoherence process may be controlled by shifting the normal mode frequencies to regions of small spectral density of the reservoirs. Different spectral densities of the reservoirs are considered and their effects on the decoherence process are analyzed. For oscillators with different damping rates, we show that the worse-quality system is improved and vice versa, a result which could be useful for quantum state protection. State recurrence and swap dynamics are analyzed as well as their roles in delaying the decoherence process. 相似文献
10.
11.
12.
Anderson localization emerges in quantum systems when randomized parameters cause the exponential suppression of motion. Here we consider this phenomenon in topological models and establish its usefulness for protecting topologically encoded quantum information. For concreteness we employ the toric code. It is known that in the absence of a magnetic field this can tolerate a finite initial density of anyonic errors, but in the presence of a field anyonic quantum walks are induced and the tolerable density becomes zero. However, if the disorder inherent in the code is taken into account, we demonstrate that the induced localization allows the topological quantum memory to regain a finite critical anyon density and the memory to remain stable for arbitrarily long times. We anticipate that disorder inherent in any physical realization of topological systems will help to strengthen the fault tolerance of quantum memories. 相似文献
13.
This article aims to provide a review on quantum walks. Starting form a basic idea of discrete-time quantum walks, we will review the impact of disorder and decoherence on the properties of quantum walks. The evolution of the standard quantum walks is deterministic and disorder introduces randomness to the whole system and change interference pattern leading to the localization effect. Whereas, decoherence plays the role of transmitting quantum walks to classical random walks. 相似文献
14.
《中国物理 B》2015,(8)
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. 相似文献
15.
16.
A. Wobst G.-L. Ingold P. Hänggi D. Weinmann 《The European Physical Journal B - Condensed Matter and Complex Systems》2002,27(1):11-14
We introduce phase space concepts to describe quantum states in a disordered system. The merits of an inverse participation
ratio defined on the basis of the Husimi function are demonstrated by a numerical study of the Anderson model in one, two,
and three dimensions. Contrary to the inverse participation ratios in real and momentum space, the corresponding phase space
quantity allows for a distinction between the ballistic, diffusive, and localized regimes on a unique footing and provides
valuable insight into the structure of the eigenstates.
Received 5 March 2002 相似文献
17.
The properties of the two-dimensional quantum walk with point,line,and circle disorders in phase are reported.Localization is observed in the two-dimensional quantum walk with certain phase disorder and specific initial coin states.We give an explanation of the localization behavior via the localized stationary states of the unitary operator of the walker+coin system and the overlap between the initial state of the whole system and the localized stationary states. 相似文献
18.
《Physics letters. A》2004,324(4):277-281
We study quantum walks on general graphs from the point of view of scattering theory. For a general finite graph we choose two vertices and attach one half line to each, and consider walks that proceed from one half line, through the graph, to the other. The probability of starting on one line and reaching the other after n steps can be expressed in terms of the transmission amplitude for the graph. 相似文献
19.
We formulate a novel approach to decoherence based on neglecting observationally inaccessible correlators. We apply our formalism to a renormalised interacting quantum field theoretical model. Using out-of-equilibrium field theory techniques we show that the Gaussian von Neumann entropy for a pure quantum state increases to the interacting thermal entropy. This quantifies decoherence and thus measures how classical our pure state has become. The decoherence rate is equal to the single particle decay rate in our model. We also compare our approach to existing approaches to decoherence in a simple quantum mechanical model. We show that the entropy following from the perturbative master equation suffers from physically unacceptable secular growth. 相似文献
20.
Pawe? Kurzyński 《Physics letters. A》2008,372(40):6125-6129
Quantum walks are not only algorithmic tools for quantum computation but also non-trivial models describing various physical processes. The Letter compares one-dimensional version of the free particle Dirac equation with the discrete time quantum walk (DTQW). It is shown that two relativistic effects associated with the Dirac equation, namely zitterbewegung (quivering motion) and Klein's paradox, are manifested in DTQW. A special case of DTQW for Lorentz invariance not satisfied in the corresponding continuous limit is considered. The effects are examined. 相似文献