首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 1H NMR study of supramolecular gels formed by two organogelators derived from valine is described. The analysis of the variation of chemical shift values and relaxation times in the gel samples reveals that in these systems only discrete species are observed by 1H NMR. The reduced T2 values and negative NOEs that are measured upon gel formation can be ascribed to an exchange between discrete organogelator species and the gel network. This process is found to be fast in the time scale of 1H NMR relaxation and slow in the NMR observation frequency time scale. It is shown here that other molecules, aside from the gelator itself, can interact with the gel network and this process can be monitored easily by measurement of relaxation times. As a proof of principle, the selective interaction of 2,2'-bis(hydroxymethyl)biphenyl over diphenylmethane with the self-assembled fibers formed by one of the gelators in benzene is described.  相似文献   

2.
Two model drugs of different physico-chemical and pharmaceutical properties (ibuprofen, acetaminophen) have been incorporated together or separately in silica-based microspheres using sol–gel and spray-drying processes. A variable amount of a neutral surfactant Brij-56© has also been added. The properties of the microspheres vary significantly depending on their composition. Three kinds of texture are identified: (1) silica containing spheroid nano-domains (formed by ibuprofen; diameters between 20 and 100 nm), (2) silica containing worm-like mesophases (formed by Brij-56© and both model drugs, typical correlation distances ~6 nm), (3) silica intimately mixed with the drug (acetaminophen) without visible phase-separation. The kinetics of drug release in simulated intestinal fluid strongly depend on these textures. The association of ibuprofen and acetaminophen in a single type of microsphere and without surfactant favours a concomitant release. Possible mechanisms of materials’ formation are discussed.  相似文献   

3.
Ibuprofen molecules have been encapsulated in mesoporous MCM-41 type-silica functionalised or not by amino groups. They have been characterised by 13C and 1H solid state NMR spectroscopy. The 13C MAS single pulse or cross polarization NMR spectra, as well as the 1H MAS NMR spectra demonstrate an extremely high mobility of the ibuprofen molecules when the matrix is not functionalised. On the contrary, when the silica matrix is functionalized by amino groups, the 13C NMR response shows less mobility suggesting the existence of interactions between the amino groups and the carboxylic groups. Benzoic acid as well as benzamide have also been encapsulated and their NMR responses compared to that of ibuprofen.  相似文献   

4.
We developed a novel type of azobenzene-containing photoresponsive molecule-imprinted silica microspheres. Ibuprofen and activated silica particles were used as template molecules and substrates, respectively. Pre-synthesized azobenzene-based monomers were chemically bonded on the surface of silica particles. Template–monomer complexes were formed relying on hydrogen bonding. Then skin layer was formed by graft polymerization of azobenzene-based monomers. After that, ibuprofen molecules were removed from their embedded spaces. The vacant spaces on the surface of particles were easily accessible for the template molecules. Furthermore, photoinduced transcis isomerization of azobenzene chromophores within imprinted vacant spaces was able to regulate their substrate affinity. The results demonstrated that the imprinted silica microspheres possessed obvious molecular imprinting effects towards the template ibuprofen, rather fast template rebinding kinetics, and appreciate selectivity over structurally related compounds.  相似文献   

5.
Solid-state 13C NMR and 2H NMR techniques have been used to investigate structural and dynamic properties of the 1,4-dicyanobutane/urea and 1,5-dicyanopentane/urea 1:1 hydrogen-bonded complexes and the 1,6-dicyanohexane/urea inclusion compound. The pure crystalline phase of urea has also been investigated. The 13C NMR studies have focused on 13C chemical shift anisotropy and second-order quadrupolar effects (arising from 13C-14N interaction) for the urea molecules and the cyano groups of the alpha,omega-dicyanoalkanes. Parameters describing these interactions are derived and are discussed in relation to the known structural properties of these materials. Comparison of 13C chemical shift anisotropies of the cyano carbons and rates of 13C dipolar dephasing suggest that 1,4-dicyanobutane and 1,5-dicyanopentane are effectively static, whereas 1,6-dicyanohexane has greater mobility. 2H NMR line shape analysis for the 1,4-dicyanobutane/urea-d4 and 1,5-dicyanopentane/urea-d4 complexes indicates that the only motion of the urea molecules that is effective on the 2H NMR time scale is a rapid libration about the C=O bond over an angular range of about 26 degrees . For the 1,6-dicyanohexane/urea-d4 inclusion compound, the 2H NMR line shape is consistent with a motion comprising 180 degrees jumps about the C=O bond at rates that are intermediate on the 2H NMR time scale. In addition, rapid libration about the C=O bond also occurs over an angular range of about 20 degrees . The dynamic properties of the urea molecules in these materials are compared with those of urea molecules in other crystalline environments.  相似文献   

6.
The solution and liquid crystalline phases formed by dissolution of the dye Edicol Sunset Yellow (ESY) in water have been examined using optical microscopy, multinuclear NMR (1H, 2H, 13C, 23Na), and X-ray diffraction. From the solution 1H and 13C spectra (particularly 13C), it is clear that the tautomeric form present in all these phases is the hydrazone, NH, structure, not the usually given azo, OH, form. Two chromonic mesophases occur: a nematic (N) phase at approximately 30-40 wt % and a hexagonal (M) phase at approximately 40-45 wt %. X-ray diffraction data show that the aggregates in the mesophases are single molecule stacks, with a typical spacing of approximately 3.5 angstroms, as expected for these systems. The NMR quadrupole splittings (2H2O, 23Na) are similar to those observed for surfactant lyotropic mesophases, suggesting that there are no water molecules or counter ions that are tightly bound to the ESY aggregates. An unusual feature of the X-ray diffraction pattern of the mesophases is the occurrence of diffuse off-axis reflections at approximately 6.8 angstroms. It is proposed that these arise from a head-to-tail packing of the molecules within the stacks.  相似文献   

7.
The reorientational dynamics of benzene-d(6) molecules hosted into the cavity of a cavitand-based, self-assembled capsule was investigated by Molecular Dynamics (MD) simulations and temperature-dependent solid-state (2)H NMR spectroscopy. MD simulations were preliminarily performed to assess the motional models of the guest molecules inside the capsules. An in-plane fast reorientation of the benzene guest around the C(6) symmetry axis (B1 motion), characterized by correlation times of the order of picoseconds, was predicted with an activation barrier ( approximately 8 kJ/mol) very similar to that found for neat benzene in the liquid state. An out-of-plane reorientation corresponding to a nutation of the C(6) symmetry axis in a cone angle of 39 degrees (B2 motion, 373 K) with an activation barrier ( approximately 39 kJ/mol) definitely larger than that of liquid benzene was also anticipated. In the temperature range 293-373 K correlation times of the order of a nanosecond have been calculated and a transition from fast to slow regime in the (2)H NMR scale has been predicted between 293 and 173 K. (2)H NMR spectroscopic analysis, carried out in the temperature range 173-373 K on the solid capsules containing the perdeuterated guest (two benzene molecules/capsule), confirmed the occurrence of the B1 and B2 motions found in slow exchange in the (2)H NMR time scale. Line shape simulation of the (2)H NMR spectral lines permitted defining a cone angle value of 39 degrees at 373 K and 35 degrees at 173 K for the nutation axis. The T(1) values measured for the (2)H nuclei of the encapsulated aromatic guest gave correlation times and energetic barrier for the in-plane motion B1 in fine agreement with theoretical calculation. The experimental correlation time for B2 as well as the corresponding energetic barrier are in the same range found for B1. A molecular mechanism for the encapsulated guest accounting for the B1 and B2 motions was also provided.  相似文献   

8.
Phospholipid‐based reverse micelles are composed of branched cylinders. Their branching points are known to attract themselves and to slide along branches. The rate of this sliding is governed by the lifetime of H(D)‐bonded water bridges between phospholipid molecules. This lifetime is increased when the water is deuterated. On condition that the water contains at least 40 D atoms %, water/dipalmitoylphosphatidylcholine (DPPC)/deuterated pyridine reverse micelles with the composition 1.1:1:250 (v/v) have been shown to self‐organize into a liquid crystal in the 310–316 K temperature range. The mechanism of this self‐organization is unraveled by following the FTIR and 1H NMR spectra of more concentrated micelles upon heating. During the preparation of micelles, pyridine‐(D+)H+ ions are formed. They give rise to hydron transfers, under the influence of the DPPC electric charges, evidenced by two broad FTIR absorptions above (BB1) and below (BB2) the ν(C? O) stretch. These hydron transfers occur along strong (D+)H+ bonds of pyridinium ions with pyridine (BB1) and DPPC C?O groups (BB2). The proton transfers at the interface of micelles, relayed in the continuous pyridine medium, create a tenuous link between separated micelles, thus facilitating their organization. Upon heating, DPPC heads shrink and DPPC chains expand to make wedge‐shaped DPPC molecules. The micelles then change in shape: cylinders constrict and enclosed water drifts towards branching points, which swell. Branching points of neighboring micelles come into contact. Due to the deuteration of water these contacts are prolonged and H bonds are formed between DPPC molecules located in each branching point. Upon storage at 39 °C, these branching points fuse. The lateral diffusion of DPPC molecules becomes free, as evidenced by a narrowing of all 1H NMR resonances. Upon further heating, reorganization into a liquid crystal occurs.  相似文献   

9.
The structure and stability of the lamellar liquid crystal formed by the surfactant sodium bis-2ethylhexyl sulfosuccinate (AOT) in water is perturbed by small amounts of the substituted acrylamides N-isopropyl, N,N-diethyl, N-acryloylmorpholine, and N,N-dimethyl methacrylamide, as revealed by small angle X-ray scattering (SAXS), deuterium NMR, and microscopy. These molecules are water soluble and stay mostly in the water layers between lamellae, but a small fraction of them (5-19%) are incorporated into the AOT bilayers, thereby producing dramatic changes. Both, the degree of anisotropy in the water molecules hydrating AOT (quadrupolar splitting in (2)H NMR) and the long period spacing between lamellae (SAXS), decrease with addition of this molecules at low concentrations, which is attributed to the lower average headgroup density at the AOT/water interface when the acrylamide is incorporated. The strength of these perturbations depends on the acrylamide, and goes in parallel with the hydrophobic character of the alkyl side groups in its molecule, which suggests that the acrylamides incorporated to the bilayer enter into contact with the lipophilic tails of the AOT molecule. An interaction with the hydrated heads of AOT is also suggested in the particular case of N-isopropylacrylamide. On increasing the molecule concentration an incipient melting of the lamellar phase towards an isotropic solution takes place, first at the microscopic level, then macroscopic. Near this phase transition, the ordered domains lose the random orientation prevailing at lower acrylamide concentrations, and adopt a preferred orientation, perpendicular to the magnetic field.  相似文献   

10.
Stable vesicles and microspheres are directly prepared in amino acid/dodecylamine (DA)/ibuprofen/H2O system. Vesicle can be automatically formed in glycine/DA/H2O system. No vesicle and microsphere are found in l-glutamic acid or l-histidine/DA/H2O systems. When ibuprofen is added into amino acid/DA/H2O system, vesicles and microspheres can be formed and coexisted. Ibuprofen can regulate the quantity ratios between the vesicles and the microspheres. The structure properties of amino acid affect on the stabilities of the vesicles and microspheres. The formation mechanisms of the vesicles and microspheres are also discussed in this paper.  相似文献   

11.
Hydrophobic- and/or hydrophilic-polymer-grafted PDVB microspheres are synthesized by the combination of hydrobromination and click-chemistry processes. The modified-PDVB microspheres and the intermediates at various stages of synthesis are characterized using GPC, 1H NMR and FTIR spectroscopy and TGA analysis. Use of the microspheres as a support matrix for reversible protein immobilization via adsorption is investigated. The system parameters such as the adsorption conditions (i.e., enzyme concentration, medium pH) and desorption are studied and evaluated with regards to the biocatalytic activity and adsorption capacity.  相似文献   

12.
The results of the study of a number of molecular and ionic H-bonded complexes in freon solutions by 1H NMR at 100–150 K are reported. It is shown that under these conditions the signals of OH(NH) protons belonging to various complexes, self-associates and free molecules are observed separately. The spin-spin coupling of the signals is frequently discernible. The fine structure makes it possible to distinguish between complexes with fast proton migration between two wells on the potential surface and those with the proton localized in one well (in particular, the central one). Several complexes with slow (in the NMR scale) proton migration have also been found.The results of the study of the non-catalytic proton exchange kinetics between various molecules containing OH and NH groups in dilute solutions in aprotic solvents are considered. The exchange between the RCOOH and ROH molecules goes on via the intermediate formation of a cyclic ionic pair with two equivalent H-bonds even in non-polar solvents such as cyclohexane. For exchange between two RCOOH or ROH molecules a synchronous transfer of two protons in a cyclic molecular complex is likely.  相似文献   

13.
Cryptophanes bearing OCH(2)COOH groups in place of the methoxy groups represent a new class of xenon-carrier molecules soluble in water at biological pH. By using (1)H and (129)Xe NMR (thermally- and laser-polarized dissolved gas), the structural and dynamical behaviors of these host molecules as well as their interaction with xenon are studied. They are shown to exist in aqueous solution under different conformations in very slow exchange. A saddle form present for one of these conformations could explain the (1)H NMR spectra. Whereas the cryptophanes in such a conformation are unable to complex xenon, unprecedented high binding constants are found for cryptophanes in the other canonical crown-crown conformation. These host molecules could therefore be valuable candidates for biosensing using (129)Xe MRI.  相似文献   

14.
Chiral recognition of the enantiomeric couples of ditryptophan and diphenylalanine was observed by (1)H NMR spectroscopy in micelles formed by sodium N-dodecanoyl-L-prolinate. Ditryptophan showed a selective association with the Z domains of the amidic aggregates, whereas diphenylalanine did not show any selectivity in the association. Partition coefficients between water and aggregates were evaluated by diffusion NMR experiments. Intramolecular distances of ditryptophan isomers associated with chiral aggregates were obtained by ROESY experiments and were used as constraints in molecular mechanics calculations. From these calculations, information on the conformation of the peptides in the chiral aggregates was obtained.  相似文献   

15.
在Lewis酸催化剂存在下,1,4-二氯甲氧基丁烷对冠醚二苯并-18-冠-6(1)进行氯甲基化修饰使其转变成氯甲基化冠醚(2),其结构经1HNMR,13C NMR,IR及MS表征。2与交联聚乙烯醇(CPVA)微球表面的羟基发生亲核取代反应实现冠醚的固载化,制得固载有冠醚的功能微球(3)。实验结果表明,1的氯甲基化反应易于进行,在两个苯环上分别发生了对称的氯甲基化反应,2为对称的四取代产物。通过2的氯甲基与CPVA的羟基之间的亲核取代反应,1可容易地化学固载到CPVA表面。  相似文献   

16.
Swollen and collapsed lyotropic lamellar rheology   总被引:1,自引:0,他引:1  
We have investigated linear rheological properties and the structure-flow relationship of the swollen (Lam(1)) and collapsed (Lam(2)) lamellar phases, formed on didodecyldimethylammonium bromide (DDAB)/lecithin/water ternary system at 25 degrees C. Both lamellar phases behaved like Bingham fluids and showed remarkable yield stresses. At rest the Lam(1) phase, which is characterized by densely packed vesicles whose sizes increase as the water content decreases in accordance to evolution of (2)H NMR spectral profiles of D(2)O, resulted in a strong elastic gel-like response. On the other hand, the Lam(2) phase, formed at high surfactant concentrations, showed a weak-gel viscoelasticity and (2)H NMR spectral patterns which are typical of planar bilayered structures. The increase of the quadrupole splitting as the water content decreases was assumed as a strong evidence of size increasing of the lamellar domains. We have demonstrated that by using dynamic rheology and the derived relaxation time spectra, along with (2)H NMR spectra of D(2)O, it is possible to differentiate between equilibrium lamellar structures occurring in a broad interval of total surfactant concentration. In addition, a shear-thickening regime, observed at intermediate shear-rate values, highlighted the onset of out-equilibrium lamellar structures which were present both on Lam(1) and Lam(2) phases.  相似文献   

17.
The synthesis and characterization of new nanoscale container molecules 7 and 8 are described. They are covalent hybrids of deepened, self-folding cavitands and metalloporphyrins. In receptor 7, the Zn-porphyrin wall is directly built onto the cavitand skeleton. Host 8 features a large unimolecular cavity containing two cavitands attached with the Zn-porphyrin wall. Its dimensions, approximately 10 x 25 A, place it among the largest synthetic hosts prepared to date. A series of adamantyl- and pyridyl-containing guests 14-20 of various lengths were prepared and used to determine the hosts' binding abilities in solution using UV/vis and (1)H NMR spectroscopy. Intramolecular hydrogen bonds at the upper rims of the cavitands resist the unfolding of the inner cavities and thereby increase the energetic barrier to guest exchange. The exchange is slow on the NMR time scale (at < or =300 K), and kinetically stable complexes result. When the cavities and metalloporphyrins participate simultaneously in the binding event, very high affinities for guests are found (-DeltaG295 up to 10 kcal x mol(-1) in toluene), to which the porphyrin fragments contribute significantly (-DeltaG295 up to 6 kcal x mol(-1)). The pairwise selection of two different guests by molecular container 8 is reported, and the termolecular complex formed raises the possibility of metal-catalyzed bimolecular reactions in these containers.  相似文献   

18.
The open-chain tetrapyrrole compound bilirubin was investigated in chloroform and dimethyl sulfoxide solutions by liquid-state NMR and as solid by (1)H, (13)C, and (15)N magic-angle spinning (MAS) solid-state NMR spectroscopy. Density functional theory (DFT) calculations were performed to interpret the data, using the B3LYP exchange-correlation functional to optimize geometries and to compute NMR chemical shieldings by the gauge-including atomic orbital method. The dependence of geometries and chemical shieldings on the size of the basis sets was investigated for the reference molecules tetramethylsilane, NH(3), and H(2)O, and for bilirubin as a monomer and in clusters consisting of up to six molecules. In order to assess the intrinsic errors of the B3LYP approximation in calculating NMR shieldings, complete basis set estimates were obtained for the nuclear shielding values of the reference molecules. The experimental liquid-state NMR data of bilirubin are well reproduced by a monomeric bilirubin molecule using the 6-311+G(2d,p) basis set for geometry optimization and for calculating chemical shieldings. To simulate the bilirubin crystal, a hexameric model was required. It was constructed from geometry-optimized monomers using information from the X-ray structure of bilirubin to fix the monomeric entities in space and refined by partial optimization. Combining experimental (1)H-(13)C and (1)H-(15)N NMR correlation spectroscopy and density functional theory, almost complete sets of (1)H, (13)C, and (15)N chemical shift assignments were obtained for both liquid and solid states. It is shown that monomeric bilirubin in chloroform solution is formed by 3-vinyl anti conformers, while bilirubin crystals are formed by 3-vinyl syn conformers. This conformational change leads to characteristic differences between the liquid- and solid-state NMR resonances.  相似文献   

19.
采用在甲基丙烯酸甲酯(MMA)悬浮聚合过程中滴加甲基丙烯酸-2-羟乙酯(HEMA)乳液聚合组分的悬浮-乳液耦合聚合方法,制备了大粒径聚甲基丙烯酸甲酯/聚甲基丙烯酸-2-羟乙酯(PMMA/PHEMA)复合微球。PMMA/PHEMA复合微球表面以HEMA乳液聚合物为主,且具有微孔结构。PMMA/PHEMA复合微球在水和苄醇中的平衡溶胀率大于PMMA微球。PMMA/PHEMA复合微球48h异丁苯丙酸负载百分比为35.6%,PMMA为27.6%。在磷酸盐缓冲液中释放时间达到360h,释放量占负载总量的82%;而PMMA微球的释放时间为216h,释放量仅占负载总量的60%。  相似文献   

20.
Acetti D  Brenna E  Fronza G  Fuganti C 《Talanta》2008,76(3):651-655
We determined the D/H isotope ratios of some ibuprofen and naproxen samples by (2)H NMR spectroscopy. Some of these values were found to be useful for collecting hints on the synthetic procedures employed to prepare these drugs. Site-specific isotope ratio analysis shows great potentials in the fight against patent infringement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号