首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present density-functional theory calculations of triplet-triplet absorption by three different approaches based on time-dependent density-functional theory (DFT): unrestricted DFT linear response, open-shell restricted DFT linear response applied to the triplet state, and quadratic response with triplet excitations applied to the ground state. Comparison is also made with corresponding results obtained by Hartree-Fock and multiconfiguration self-consistent-field response theory. Two main conclusions concerning triplet-triplet transitions are drawn in this study: First, the very good agreement between unrestricted and restricted DFT results indicates that spin contamination of the triplet state is not a serious problem when computing triplet-triplet spectra of common organic molecules. Second, DFT response calculations of triplet-triplet transitions can be affected by triplet instability problems, especially for the combination of DFT quadratic response with functionals containing fractional exact Hartree-Fock exchange.  相似文献   

2.
The bimolecular quenching of the first excited singlet state of oxonine by allylthiourea leads to the formation of the triplet state of the dye. This has been proved by comparison with the triplet-triplet absorption spectrum of oxonine obtained by triplet-triplet energy transfer. The conventional flash experiments suggest that the dye triplet state is produced directly rather than by radical recombination.  相似文献   

3.
The photophysical properties of a series of 3,4-ethylenedioxythiophene oligomers (OEDOT) with up to five repeat units are studied as function of conjugation length using absorption, fluorescence, phosphorescence, and triplet-triplet absorption spectroscopy at low temperature in a rigid matrix. At 80 K, a remarkably highly resolved vibrational fine structure can be observed in the all electronic spectra which reveals that the electronic structure of the oligomers strongly couples to two different vibrational modes (approximately 180 and approximately 50 meV). The energies of the 0-0 transitions in absorption, and fluorescence, phosphorescence, and triplet-triplet absorption all show a reciprocal dependence on the inverse number of repeat units. The triplet energies inferred from the phosphorescence spectra are accurately reproduced by quantum chemical DFT calculations using optimized geometries for the singlet ground state (S0) and first excited triplet state (T1). Using vibrational IR and Raman spectroscopy and quantum chemical DFT calculations for the normal modes in the ground state, we have been able to assign the vibrations that couple to the electronic structure to fully symmetric normal modes. The high-energy mode is associated with the well-known carbon-carbon bond stretch vibration, and the low-energy mode involves a deformation of the bond angles within the thiophene rings and a change of C-S bond lengths. Experimentally obtained Huang-Rhys parameters and theoretical normal mode deformations are used to analyze the geometry changes between T1 and S0 and to semiexperimentally predict the geometry in the S1 state for 2EDOT.  相似文献   

4.
A mechanism of energy transfer from highly excited triplet aromatic molecules has been developed, which involves a stage of formation of an exciplex between a highly excited energy-donor molecule and an unexcited energy-acceptor molecule. Interpretation of the experimental data on the shape and the intensity of triplet-triplet absorption bands and the energy transfer probability is presented. In this interpretation, the results of quantum-chemical calculations of the energies of highly excited triplet states of toluene and benzene molecules are used.  相似文献   

5.
A number of photophysical properties of three different types of rubreneperoxides have been measured experimentally by flash spectroscopy technique, including the two-photon absorption, fluorescence, delayed fluorescence and temperature dependent triplet-triplet absorption spectra. Excited singlet and triplet state lifetimes are temperature dependent. Lowest triplet state lifetimes were measured from 77 K to 50 degrees C. Experimental observations showed that as we decreased the temperature of rubreneperoxides, most of the molecules migrate to the lowest vibrational and rotational energy levels of the ground electronic state. Similar migration is also observed for the lowest triplet state. Therefore at 77 K, we can get the clean absorption an emission spectra and decay curves for the lowest triplet state. At 50 degrees C, due to the P- and/or E-type of delayed fluorescences, decay of T(1) state, in other words disappearance of the T(1) state is becoming faster than at low temperature (below room temperature).  相似文献   

6.
We have studied the triplet energy transfer (TET) for photosynthetic light-harvesting complexes, the bacterial light-harvesting complex II (LH2) of Rhodospirillum molischianum and Rhodopseudomonas acidophila, and the peridinin-chlorophyll a protein (PCP) from Amphidinium carterae. The electronic coupling factor was calculated with the recently developed fragment spin difference scheme (You and Hsu, J. Chem. Phys. 2010, 133, 074105), which is a general computational scheme that yields the overall coupling under the Hamiltonian employed. The TET rates were estimated based on the couplings obtained. For all light-harvesting complexes studied, there exist nanosecond triplet energy transfer from the chlorophylls to the carotenoids. This result supports a direct triplet quenching mechanism for the photoprotection function of carotenoids. The TET rates are similar for a broad range of carotenoid triplet state energy, which implies a general and robust TET quenching role for carotenoids in photosynthesis. This result is also consistent with the weak dependence of TET kinetics on the type or the number of π conjugation lengths in the carotenoids and their analogues reported in the literature. We have also explored the possibility of forming triplet excitons in these complexes. In B850 of LH2 or the peridinin cluster in PCP, it is unlikely to have triplet exciton since the energy differences of any two neighboring molecules are likely to be much larger than their TET couplings. Our results provide theoretical limits to the possible photophysics in the light-harvesting complexes.  相似文献   

7.
Abstract— Energy transfer from chlorophyll A in its lowest triplet state to carotenoid pigments is demonstrated by rapid flash photolysis experiments.
Two systems are used; the first consists of chlorophyll A and p carotene in organic solvents: in diluted solutions, energy transfer is diffusion controlled. The second consists of chlorophyll A and lutein incorporated into digitonin micelles suspended in water; with this system a very rapid energy transfer is observed (< 0.4 × 10--6 sec).
Energy transfer results in a carotenoid metastable state, which is supposed to be a triplet state; for lutein its half-life is 8·9 × 10--6 sec, and it has an absorption peak at 518 nm. Depopulation of lutein ground state, around 450 nm, can be observed, as well as the reactivity of oxygen towards the metastable state.
Most of these results were obtained with a Q -switch ruby laser as exciting source (6943 Å). A 4350 Å flash can also be obtained by two successive non linear effects. Using this flash for exciting chlorophyll A alone, a strong signal is detected, due to its triplet state. By exciting directly B carotene or lutein, it is not possible to detect any metastable state with our technique.  相似文献   

8.
Abstract— In an attempt to study the quenching of the triplet state of acetophenone by indole, we have prepared the compounds containing these chromophores intramolecularly. The emission measurements in rigid glasses at 77 K have indicated that the quenching of the triplet acetophenone is due to intramolecular triplet-triplet energy transfer to the indole chromophore, resulting in the sensitization of the indole phosphorescence. The efficiency of the energy transfer has reached ca. 100% in ethanol glasses, while it has been suggested that in methylcyclohexane glasses, the indole chromophore except for 1-methyl derivative is subjected to strong interaction with the acetophenone chromophore other than electronic energy transfer.  相似文献   

9.
This article sheds new light on the interplay of electronic and conformational effects in luminescent bipolar molecules. A series of carbazole/1,3,4-oxadiazole hybrid molecules is described in which the optoelectronic properties are systematically varied by substituent effects which tune the intramolecular torsion angles. The synthesis, photophysical properties, cyclic voltammetric data, X-ray crystal structures, and DFT calculations are presented. Excited state intramolecular charge transfer (ICT) is observed from the donor carbazole/2,7-dimethoxycarbazole to the acceptor phenyl/diphenyloxadiazole moieties. Introducing more bulky substituents onto the diphenyloxadiazole fragment systematically increases the singlet and triplet energy levels (E(S) and E(T)) and blue shifts the absorption and emission bands. The triplet excited state is located mostly on the oxadiazole unit. The introduction of 2,7-dimethoxy substituents onto the carbazole moiety lowers the value of E(S), although E(T) is unaffected, which means that the singlet-triplet gap is reduced (for 7bE(S) - E(T) = 0.61 eV). A strategy has been established for achieving unusually high triplet levels for bipolar molecules (E(T) = 2.64-2.78 eV at 14 K) while at the same time limiting the increase in the singlet energy.  相似文献   

10.
Triplet-triplet annihilation (TTA) based upconversions are attractive as a result of their readily tunable excitation/emission wavelength, low excitation power density, and high upconversion quantum yield. For TTA upconversion, triplet sensitizers and acceptors are combined to harvest the irradiation energy and to acquire emission at higher energy through triplet-triplet energy transfer (TTET) and TTA processes. Currently the triplet sensitizers are limited to the phosphorescent transition metal complexes, for which the tuning of UV-vis absorption and T(1) excited state energy level is difficult. Herein for the first time we proposed a library of organic triplet sensitizers based on a single chromophore of boron-dipyrromethene (BODIPY). The organic sensitizers show intense UV-vis absorptions at 510-629 nm (ε up to 180,000 M(-1) cm(-1)). Long-lived triplet excited state (τ(T) up to 66.3 μs) is populated upon excitation of the sensitizers, proved by nanosecond time-resolved transient difference absorption spectra and DFT calculations. With perylene or 1-chloro-9,10-bis(phenylethynyl)anthracene (1CBPEA) as the triplet acceptors, significant upconversion (Φ(UC) up to 6.1%) was observed for solution samples and polymer films, and the anti-Stokes shift was up to 0.56 eV. Our results pave the way for the design of organic triplet sensitizers and their applications in photovoltaics and upconversions, etc.  相似文献   

11.
A series of benzophenone (BP) and norbornadiene (NBD)-labeled poly(aryl ether) dendrimers (Gn-NBD), generations 1-4, were synthesized, and their photophysical and photochemical properties were examined. The phosphorescence of the peripheral BP (donor) chromophore was efficiently quenched by the NBD (acceptor) group attached to the focal point. Time-resolved spectroscopic measurements indicated that the lifetime of the triplet state of the BP chromophore was shortened due to the proximity of the NBD group. Selective excitation of the BP chromophore resulted in isomerization of the NBD group to quadricyclane (QC). All of these observations suggest that an intramolecular triplet energy transfer occurs in Gn-NBD molecules. The light-harvesting ability of these molecules increases with generation due to an increase in the number of peripheral chromophores. The energy transfer efficiencies are ca. 0.97, 0.54, 0.45, and 0.37 for generations 1-4, respectively, and the rate constant of the triplet-triplet energy transfer is ca. 10(6)-10(7) s(-1), which decreases inconspicuously with increasing generation. The intramolecular triplet energy transfer is proposed to proceed mainly via a through-space mechanism involving the closest donor (folding back conformation) and acceptor groups.  相似文献   

12.
Excited states of ruthenium polypyridine-type complexes have always attracted the interest of chemists. We have recently found evidence of a remarkable long-lived excited state (30 micros) for a Ru(II) complex containing a heteroditopic ligand that can be viewed as a fused phenanthroline and salophen ligand.1 To unravel this intriguing electronic property, we have used density functional theory (DFT) calculations to understand the ground-state properties of [(bpy)(2)Ru(LH(2))](2+), where LH(2) represents N,N'-bis(salicylidene)-(1,10-phenanthroline)diamine. Excited singlet and triplet states have been examined by the time-dependent DFT (TDDFT) formalism and the theoretical findings have been compared with those for the parent complex [Ru(bpy)(3)](2+). The outstanding result is the presence of excited states lower in energy than the metal-to-ligand charge-transfer states, originating from intraligand charge transfer (ILCT) from the phenolic rings to the phenanthroline part of the coordinated LH(2). The spin density distribution for the lowest triplet state provides evidence that it is in fact the lowest triplet state of the free ligand. Correlation between the energy level diagram of orbitals for the ground state and that for the (3)ILCT state clearly establishes that the ruthenium retains its formal Ru(II) oxidation state. The quenching of the luminescence and the evidence of the long-lived excited state observed for [(bpy)(2)Ru(LH(2))](2+) are discussed in the light of the computational results.  相似文献   

13.
Using single- and multireference approaches we have examined many of the low-lying electronic states of oxo-Mn(salen), several of which have not been explored previously. Large complete-active-space self-consistent-field (CASSCF) computations have been performed in pursuit of an accurate ordering for the lowest several electronic states. Basis set and relativistic effects have also been considered. For the geometry considered, our best results indicate the ground spin state to be a closed-shell singlet, followed by a pair of low-lying triplet states, with additional singlet states and the lowest quintet state lying significantly higher in energy. Hartree-Fock and density functional theory (DFT) results are obtained and are compared to the more robust CASSCF results. The Hartree-Fock results are qualitatively incorrect for the relative energies of the states considered. Popular density functionals such as BP86 and B3LYP are superior to Hartree-Fock for this problem, but they give inconsistent answers regarding the ordering of the lowest singlet and triplet states and they greatly underestimate the singlet-quintet gap. We obtained multiple Hartree-Fock and DFT solutions within a given spin multiplicity, and these solutions have been subjected to wave function stability analysis.  相似文献   

14.
The photophysical properties of a novel 1,2,3,4,5,6-hexasubstituted fullerene derivative (1) are examined in this study. In addition to the ground state absorption spectrum of 1, we report its triplet-triplet absorption spectrum and molar extinction coefficient (Deltae(T-T)), as well as the triplet quantum yield (PhiT), lifetime (tauT), and energy (ET). The saturation of a single six-member ring on the fullerene cage results in significant changes in the triplet state properties as compared to that of pristine C60. The triplet-triplet absorption spectrum shows a hypsochromic shift in long wavelength absorption, and both the triplet state lifetime and the triplet quantum yield are decreased. The triplet energy was found to be similar to that of C60. In addition, the quantum yield (PHI(delta)) of singlet oxygen generated by 1 was calculated and is found to be significantly less than in the case of C60.  相似文献   

15.
Three main xanthophyll pigments are bound to the major photosynthetic pigment-protein complex of Photosystem II (LHCII): lutein, neoxanthin and violaxanthin. Chromatographic analysis of the xanthophyll fraction of LHCII reveals that lutein appears mainly in the all-trans conformation, neoxanthin in the 9'-cis conformation and major fraction of violaxanthin in the all-trans conformation. Nevertheless, a small fraction of violaxanthin appears always in a cis conformation: 9-cis and 13-cis (approximately 4% and 2% in the darkness, respectively). Illumination of the isolated complex (5 min, 445 nm, 250 micromolm-2s-1) results in the substantial increase in the concentration of the cis steric conformers of violaxanthin: up to 6% of 9-cis and 4% of 13-cis. Similar effect can be obtained by dark incubation of the same preparation for 30 min at 60 degrees C. Heating-induced isomerization of the all-trans violaxanthin can also be obtained in the organic solvent system but the formation of the 9-cis stereoisomer has not been observed under such conditions. The fact that the appearance of the 9-cis form of violaxanthin is specific for the protein environment suggests that violaxanthin may replace neoxanthin in LHCII in the N1 xanthophyll binding pocket and that the protein stabilizes this particular conformation. The analysis of the electronic absorption spectra of LHCII and the FTIR spectra of the protein in the Amid I band spectral region indicates that violaxanthin isomerization is associated with the disaggregation of the complex. It is postulated that this reorganization of LHCII provides conditions for desorption of violaxanthin from the pigment protein complexes, its diffusion within the thylakoid membrane and therefore, availability to the enzymatic deepoxidation within the xanthophyll cycle. It is also possible that violaxanthin isomerization plays the role of a security valve, by consuming an energy of excessive excitations in the antenna pigment network (in particular, exchanged at the triplet state levels).  相似文献   

16.
We have explored the photogeneration of the coumarin 314 radical cation by using nanosecond laser excitation at wavelengths longer than 400 nm in benzene, acetonitrile, dichloromethane, and aqueous media. In addition, time-resolved absorption spectroscopy measurements allowed detection of the triplet excited state of coumarin 314 (C(314)) with a maximum absorption at 550 nm in benzene. The triplet excited state has a lifetime of 90 μs in benzene. It is readily quenched by oxygen (k(q) = 5.0 × 10(9) M(-1) s(-1)). From triplet-triplet energy transfer quenching experiments, it is shown that the energy of this triplet excited state is higher than 35 kcal/mol, in accord with the relatively large singlet oxygen quantum yield (Φ(Δ) = 0.25). However, in aqueous media, the coumarin triplet was no longer observed, and instead of that, a long-lived (160 μs in air-equilibrated solutions) free radical cation with a maximum absorbance at 370 nm was detected. The free radical cation generation, which has a quantum yield of 0.2, occurs by electron photoejection. Moreover, density functional theory (DFT) calculations indicate that at least 40% of the electronic density is placed on the nitrogen atom in aqueous media, which explains its lack of reactivity toward oxygen. On the other hand, rate constant values close to the diffusion rate limit in water (>10(9) M(-1) s(-1)) were found for the quenching of the C(314) free radical cation by phenolic antioxidants. The results have been interpreted by an electron-transfer reaction between the phenolic antioxidant and the radical cation where ion pair formation could be involved.  相似文献   

17.
Visible light-harvesting C(60)-bodipy dyads were devised as universal organic triplet photosensitizers for triplet-triplet annihilation (TTA) upconversion. The antennas in the dyad were used to harvest the excitation energy, and then the singlet excited state of C(60) will be populated via the intramolecular energy transfer from the antenna to C(60) unit. In turn with the intrinsic intersystem crossing (ISC) of the C(60), the triplet excited state of the C(60) will be produced. Thus, without any heavy atoms, the triplet excited states of organic dyads are populated upon photoexcitation. Different from C(60), the dyads show strong absorption of visible light at 515 nm (C-1, ε = 70400 M(-1) cm(-1)) or 590 nm (C-2, ε = 82500 M(-1) cm(-1)). Efficient intramolecular energy transfer from the bodipy moieties to C(60) unit and localization of the triplet excited state on C(60) were confirmed by steady-state and time-resolved spectroscopy as well as DFT calculations. The dyads were used as triplet photosensitizers for TTA upconversion, and an upconversion quantum yield up to 7.0% was observed. We propose that C(60)-organic chromophore dyads can be used as a general molecular structural motif for organic triplet photosensitizers, which can be used for photocatalysis, photodynamic therapy, and TTA upconversions.  相似文献   

18.
Nowadays, blue fluorescent organic light-emitting diodes (FOLEDs) have attracted considerable attention from both academia and industry. According to spin statistics, electrical excitation results in the formation of ∼25% singlet excitons and ∼75% triplet excitons (signifying ~75% energy loss), which triggered wide-ranging efforts to harvest as many triplet excitons as possible. The materials that can convert triplet excitons into singlet excitons from the high-lying excited triplet states (referred as “hot exciton” channel) to realize high efficiency were reported, which can also efficaciously avoid the accumulation of triplet excitons in T1 state. In this study, by means of density functional theory (DFT) and time-dependent DFT, we have theoretically investigated the electronic and photophysical properties of 16 newly designed molecules with donor-bridge-acceptor framework to search for the blue FOLED materials exploiting the “hot exciton” path. Important properties, such as singlet-triplet energy gaps, absorption and emission parameters, and reverse intersystem crossing rates (kRISC), of five target molecules were studied. The calculated results demonstrate that thiophene-diphenylamine (kRISC up to 1.03 × 108 seconds−1) may have promising potential as blue FOLED materials by virtue of the “hot exciton” effect.  相似文献   

19.
Results of triplet-triplet energy transfer from biacetyl to OPVs and OPV triplet statequenching by 1, 4-diazabicyclo[2.2.2] octane (DABCO) suggested that triplet state ofoligophenylenevinylenes(OPVs) directly takes part in their photooxidative degradation instead ofjust generating singlet oxygen.  相似文献   

20.
Synthesis, absorption spectra and luminescebce properties of a series of lanthanide trisbipyridine cryptates Ln within R-Bpy x R-Bpy x R-Bpy, where Ln = Eu, Gd and R = H, COOH, COOCH3, CONH(CH2)2NH2 are described. Comparison of the unsubstituted parent compound with the substituted compounds shows that bipyridine substitution doesn't alter significantly the photophysical properties of the lanthanide cryptate. The absorption maximum is slightly red-shifted when three bipyridines are substituted, whereas substituting one bipyridines has a negligible effect on the absorption spectra. The experimental triplet state energy is between 21600 and 22 100 cm(-1) for the series of compounds and the luminescence lifetimes at 77 K are between 0.5 and 0.8 ms in HO2 and equal to 1.7 ms in D2O. The experimental characterizations are completed by DFT and TD-DFT calculations to assess the ability of these approaches to predict absorption maxima, triplet state energies and structural parameters of lanthanide cryptates and to characterize the electronic structure of the excited states. The calculations on the unsubstituted parent and substituted compounds show that absorption maxima and lowest 3pipi* triplet state energies can be accurately determined from density functional theory (DFT) and time-dependent (TD) DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号