首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adjuvants are key immunostimulatory components in vaccine formulations, which improve the immune response to the co-administered antigen. The saponin natural product QS-21 is one of the most promising immunoadjuvants in the development of vaccines against cancer and infectious diseases but suffers from limitations that have hampered its widespread human use. Previous structure–activity relationship studies have identified simplified saponin variants with truncated carbohydrate chains, but have not focused on the influence of the linear oligosaccharide domain of QS-21 in adjuvant activity. Herein, an expeditious 15-step synthesis of new linear trisaccharide variants of simplified QS-21-derived adjuvants is reported, in which the complex terminal xylose-rhamnose moiety has been replaced with commercially available, simpler lactose and cellobiose disaccharides in a β-anomeric configuration. In vivo immunological evaluation of the synthetic saponins showed attenuated antibody responses, highlighting the negative impact of such carbohydrate modifications on adjuvant activity, which could be associated with higher saponin conformational flexibility.  相似文献   

2.
Kim YJ  Gin DY 《Organic letters》2001,3(12):1801-1804
[see structure]. The first synthesis of the trisaccharide fragment of the potent immunologic adjuvant QS-21A is reported. The key steps involve the application of sulfonium-mediated oxidative and dehydrative glycosidic couplings to construct the anomeric linkages in a short and convergent assembly of the branched trisaccharide.  相似文献   

3.
QS-7-Api is an exceedingly potent immuno-adjuvant isolated from the bark of Quillaja saponaria. It is significantly less toxic than QS-21, a related saponin that is currently the favored adjuvant in anticancer and antiviral vaccine clinical trials. Tedious isolation/purification protocols and uncertainty in its structural constitution have hindered the clinical development of QS-7. A chemical synthesis of QS-7-Api is described, providing structural verification of the adjuvant. A novel semisynthetic sequence to QS-7-Api has also been established, greatly facilitating access to QS-7 for preclinical and clinical evaluation.  相似文献   

4.
Immunological adjuvants such as the saponin natural product QS-21 help stimulate the immune response to co-administered antigens and have become increasingly important in the development of prophylactic and therapeutic vaccines. However, clinical use of QS-21 is encumbered by chemical instability, dose-limiting toxicity, and low-yielding purification from the natural source. Previous studies of structure–activity relationships in the four structural domains of QS-21 have led to simplified, chemically stable variants that retain potent adjuvant activity and low toxicity in mouse vaccination models. However, modification of the central glycosyl ester linkage has not yet been explored. Herein, we describe the design, synthesis, immunologic evaluation, and molecular dynamics analysis of a series of novel QS-21 variants with different linker lengths, stereochemistry, and flexibility to investigate the role of this linkage in saponin adjuvant activity and conformation. Despite relatively conservative structural modifications, these variants exhibit striking differences in in vivo adjuvant activity that correlate with specific conformational preferences. These results highlight the junction of the triterpene and linear oligosaccharide domains as playing a critical role in the immunoadjuvant activity of the Quillaja saponins and also suggest a mechanism of action involving interaction with a discrete macromolecular target, in contrast to the non-specific mechanisms of emulsion-based adjuvants.  相似文献   

5.
QS-21 is one of the most promising new adjuvants for immune response potentiation and dose-sparing in vaccine therapy given its exceedingly high level of potency and its favorable toxicity profile. Melanoma, breast cancer, small cell lung cancer, prostate cancer, HIV-1, and malaria are among the numerous maladies targeted in more than 80 recent and ongoing vaccine therapy clinical trials involving QS-21 as a critical adjuvant component for immune response augmentation. QS-21 is a natural product immunostimulatory adjuvant, eliciting both T-cell- and antibody-mediated immune responses with microgram doses. Herein is reported the synthesis of QS-21A(api) in a highly modular strategy, applying novel glycosylation methodologies to a convergent construction of the potent saponin immunostimulant. The chemical synthesis of QS-21 offers unique opportunities to probe its mode of biological action through the preparation of otherwise unattainable nonnatural saponin analogues.  相似文献   

6.
QS-21A is one of the most promising new adjuvants for immune response potentiation and dose-sparing in vaccine therapy, given its exceedingly high level of potency and its favorable toxicity profile. Melanoma, breast cancer, small cell lung cancer, prostate cancer, HIV-1, and malaria are among the numerous maladies targeted in more than 80 recent and ongoing clinical trials involving QS-21A as a critical component for immune response augmentation in microgram doses. Herein is reported the first synthesis and structure verification of QS-21Aapi, applying novel glycosylation methodologies in the convergent modular construction of this rare and potent natural product immunostimulant.  相似文献   

7.
The first synthesis of the anti‐TB cyclic peptide callyaerin A ( 1 ), containing a rare (Z)‐2,3‐diaminoacrylamide bridging motif, is reported. Fmoc‐formylglycine‐diethylacetal was used as a masked equivalent of formylglycine in the synthesis of the linear precursor to 1 . Intramolecular cyclization between the formylglycine residue and the N‐terminal amine in the linear peptide precursor afforded the macrocyclic natural product 1 . Synthetic 1 possessed potent anti‐TB activity (MIC100=32 μm ) while its all‐amide congener was inactive. Variable‐temperature NMR studies of both the natural product and its all‐amide analogue revealed the extraordinary rigidity imposed by this diaminoacrylamide unit on peptide conformation. The work reported herein pinpoints the intrinsic role that the (Z)‐2,3‐diaminoacrylamide moiety confers on peptide bioactivity.  相似文献   

8.
Regioselective reductive openings of mixed phenolic-benzylic acetals, using BH3.NMe3-AlCl3, was investigated, and a mechanism where the outcome is directed by the electrostatic potential of the two oxygen atoms is presented. The regioselective acetal opening was used in the synthesis of a fluorescently labeled analogue to antiproliferative xylosides. The fluorescently labeled xyloside was tested for uptake, antiproliferative activity, and glycosaminoglycan priming in different cell lines. The xyloside was taken up by all cell lines but did not initiate glycosaminoglycan biosynthesis.  相似文献   

9.
We have developed a high throughput assay for the measurement of protease activity in solution. This technology will accelerate research in functional proteomics and enable biologists to streamline protease substrate evaluation and optimization. The peptide sequences that serve as protease substrates in this assay are labeled on the carboxy terminus with a biotin moiety and a fluorescent tag is attached to the amino terminus. Protease cleavage causes the biotin containing fragment to be detached from the labeled peptide fragment. Following the protease treatment, all biotin containing species (uncleaved substrates and the cleaved carboxy terminal fragment of the substrate) are removed by incubation with streptavidin beads. The cleaved fluorescently labeled amino terminal part of the substrate remains in solution. The measured fluorescence intensity of the solution is directly proportional to the activity of the protease. This assay was validated using trypsin, chymotrypsin, caspase-3, subtilisin-A, enterokinase and tobacco etch virus protease.  相似文献   

10.
Two pentasaccharide sulfonic acids that were related to the antithrombin-binding domain of heparin were prepared, in which two or three primary sulfate esters were replaced by sodium-sulfonatomethyl moieties. The sulfonic-acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic-acid esters were found to be excellent donors and acceptors in the glycosylation reactions. Throughout the synthesis, the hydroxy groups to be methylated were masked in the form of acetates and the hydroxy groups to be sulfated were masked with benzyl groups. The disulfonic-acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more-efficient approach, which involved elongation of the trisaccharide acceptor with a non-oxidized precursor of the glucuronic acid followed by post-glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of these new sulfonic-acid derivatives revealed that the disulfonate analogue inhibited the blood-coagulation-proteinase factor?Xa with outstanding efficacy; however, the introduction of the third sulfonic-acid moiety resulted in a notable decrease in the anti-Xa activity. The difference in the biological activity of the disulfonic- and trisulfonic-acid counterparts could be explained by the different conformation of their L-iduronic-acid residues.  相似文献   

11.
Skp1 is a cytoplasmic and nuclear protein, best known as an adaptor of the SCF family of E3‐ubiquitin ligases that label proteins for their degradation. Skp1 in Dictyostelium is posttranslationally modified on a specific hydroxyproline (Hyp) residue by a pentasaccharide, which consists of a Fucα1,2‐Galβ‐1,3‐GlcNAcα core, decorated with two α‐linked Gal residues. A glycopeptide derived form Skp1 was prepared to characterize the α‐galactosyltransferase (AgtA) that mediates the addition of the α‐Gal moieties, and to develop antibodies suitable for tracking the trisaccharide isoform of Skp1 in cells. A strategy was developed for the synthesis of the core trisaccharide‐Hyp based on the use of 2‐naphthylmethyl (Nap) ethers as permanent protecting groups to allow late stage installation of the Hyp moiety. Tuning of glycosyl donor and acceptor reactivities was critical for achieving high yields and anomeric selectivities of glycosylations. The trisaccharide‐Hyp moiety was employed for the preparation of the glycopeptide using microwave‐assisted solid phase peptide synthesis. Enzyme kinetic studies revealed that trisaccharide‐Hyp and trisaccharide‐peptide are poorly recognized by AgtA, indicating the importance of context provided by the native Skp1 protein for engagement with the active site. The trisaccharide‐peptide was a potent immunogen capable of generating a rabbit antiserum that was highly selective toward the trisaccharide isoform of full‐length Skp1.  相似文献   

12.
Microcontact chemistry has been applied to patterned glass and silicon substrates by successive reaction of unprotected and monoprotected heterobifunctional linkers with alkene-terminated self-assembled monolayers (SAMs) to produce bi-, tri-, and tetrafunctional surfaces. Photochemical microcontact printing of an azide thiol linker followed by immobilization of an acid thiol linker on an undecenyl-terminated SAM results in a well-defined, micropatterned surface with terminal azide, acid, and alkene groups. Biologically relevant molecules (biotin, carbohydrates) have been selectively attached to the surface by means of orthogonal ligation chemistry, and the resulting microarrays display selective binding to fluorescently labeled proteins. An orthogonally addressable, tetrafunctional surface (azide, acid, alkene, and amine) can be prepared by an additional printing step of a tert-butyloxycarbonyl (Boc)-protected alkyne amine linker on the azide structures by using the copper(I)-catalyzed azide-alkyne Huisgen cycloaddition and subsequent removal of the protective group.  相似文献   

13.
Membrane-spanning phospholipid bolaamphiphiles either alone or as a constituent of a multicomponent lipid membrane may prove to be facile building blocks for generating robust bioactive membrane-mimetic assemblies. We have previously reported the synthesis of asymmetric dialkyl phospholipid bolaamphiphiles that contain ester linked phosphatidylcholine and amine functionalities at opposite chain ends. In this report, we describe the synthesis of phospholipid bolaamphiphiles that are conjugated to biotin via the terminal amine with or without a poly(ethylene oxide) spacer arm of varying chain length. The behavior of biotinylated bolaamphiphiles as a self-assembled monolayer at an air-water interface was characterized by epi-fluorescence microscopy and revealed that domain structure and pi-A isotherms were substantially influenced by linker type and size. Substrate bound assemblies were produced by Langmuir-Blodgett deposition onto planar substrates coated with an avidin derivatized polyelectrolyte multilayer. Significantly, external reflectance infrared spectroscopy confirmed the fabrication of bolaamphiphile thin films that display extended stability in vitro.  相似文献   

14.
Two pentasaccharide sulfonic acids that were related to the antithrombin‐binding domain of heparin were prepared, in which two or three primary sulfate esters were replaced by sodium‐sulfonatomethyl moieties. The sulfonic‐acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic‐acid esters were found to be excellent donors and acceptors in the glycosylation reactions. Throughout the synthesis, the hydroxy groups to be methylated were masked in the form of acetates and the hydroxy groups to be sulfated were masked with benzyl groups. The disulfonic‐acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more‐efficient approach, which involved elongation of the trisaccharide acceptor with a non‐oxidized precursor of the glucuronic acid followed by post‐glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of these new sulfonic‐acid derivatives revealed that the disulfonate analogue inhibited the blood‐coagulation‐proteinase factor Xa with outstanding efficacy; however, the introduction of the third sulfonic‐acid moiety resulted in a notable decrease in the anti‐Xa activity. The difference in the biological activity of the disulfonic‐ and trisulfonic‐acid counterparts could be explained by the different conformation of their L ‐iduronic‐acid residues.  相似文献   

15.
This paper examines the single-molecule adsorption of YOYO-I-labeled lambda-DNA at compositionally patterned self-assembled monolayers (SAMs). The interactions of fluorescently labeled lambda-DNA molecule with the patterned SAMs, which are comprised of different functional groups (i.e., amine-, alcohol-, and acid-terminated thiolates), were monitored at optically transparent gold films using total internal reflection fluorescence microscopy. The role of solution pH, lambda-DNA concentration, and domain size was investigated. In addition to delineation of the relative adsorption strength as a function of terminal group identity (NH2 > COOH > OH), the potential importance of structural defects was also revealed. The latter result, found both at the disordered boundaries between domains and at adlayers in which structural order was affected by the length of the alkyl chain, points to the subtle but preferential adsorption of the "sticky ends" of lambda-DNA. These experiments also detected an intriguing dependence of adsorption with respect to domain size.  相似文献   

16.
海洋硫酸多糖911的荧光标记研究   总被引:7,自引:0,他引:7  
硫酸多糖(911)的性末端的半缩醛基,通过还原胺化反应与酪胺(Tyr)的氨基共价偶联,911-Tyr中酪胺引入的仲氨基通过与异硫氰酸酯荧光素(FITC)进行亲核反应,实现对911还原末端的选择性荧光标记。用UV-Vis吸收光谱,^1H NMR和HPSEC对偶联与标记结果进行确证,从^1H NMR谱推测911与酪胺的偶联率及FITC为911-Tyr标记率分别为60%和80%。由于采用的是911末端选择性标记,对911的抗凝活性无明显影响,也无明显细胞的毒性。以荧光标记的911作为探针,对淋巴细胞有较强的选择性标记染色。该法适用于具有还原末端的多糖及寡糖的荧光标记。  相似文献   

17.
Protein profiling probes are important tools for studying the composition of the proteome and as such have contributed greatly to the understanding of various complex biological processes in higher organisms. For this purpose the application of fluorescently labeled activity or affinity probes is highly desirable. Especially for in vivo detection of low abundant target proteins, otherwise difficult to analyse by standard blotting techniques, fluorescently labeled profiling probes are of high value. Here, a one-pot protocol for the synthesis of activated fluorescent labels (i.e. azide, alkynyl or NHS), based on the Ugi-4-component reaction (Ugi-4CR), is presented. As a result of the peptoidic structure formed, the fluorescent properties of the products are pH insensitive. Moreover, the applicability of these probes, as exemplified by the labeling of model protein BSA, will be discussed.  相似文献   

18.
The heavier group 2 complexes [M{N(SiMe(3))(2)}(2)](2)(1, M = Ca; 2, M = Sr) and [M{CH(SiMe(3))(2)}(2)(THF)(2)] (3, M = Ca; 4, M = Sr) are shown to be effective precatalysts for the intermolecular hydroamination of vinyl arenes and dienes under mild conditions. Initial studies revealed that the amide precatalysts, 1 and 2, while compromised in terms of absolute activity by a tendency toward transaminative behavior, offer greater stability toward polymerization/oligomerization side reactions. In every case the strontium species, 2 and 4, were found to outperform their calcium congeners. Reactions of piperidine with para-substituted styrenes are indicative of rate-determining alkene insertion in the catalytic cycle while the ease of addition of secondary cyclic amines was found to be dependent on ring size and reasoned to be a consequence of varying amine nucleophilicity. Hydroamination of conjugated dienes yielded isomeric products via η(3)-allyl intermediates and their relative distributions were explained through stereoelectronic considerations. The ability to carry out the hydroamination of internal alkynes was found to be dramatically dependent upon the identity of the alkyne substituents while reactions employing terminal alkynes resulted in the precipitation of insoluble and unreactive group 2 acetylides. The rate law for styrene hydroamination with piperidine catalyzed by [Sr{N(SiMe(3))(2)}(2)](2) was deduced to be first order in [amine] and [alkene] and second order in [catalyst], while large kinetic isotope effects and group 2 element-dependent ΔS(++) values implicated the formation of an amine-assisted rate-determining alkene insertion transition state in which there is a considerable entropic advantage associated with use of the larger strontium center.  相似文献   

19.
The first synthesis of the common trisaccharide of glycoforms of the outer core region of the Pseudomonas aeruginosa lipopolysaccharide is reported. A fully protected trisaccharide precursor was prepared via a highly efficient α-(1→4)-glucosylation of a β-(1→3)-linked 6-O-benzyl-2-azido-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)-α-d-galactopyranoside. In contrast, an alternative sequence of glycosylations, which involves β-glucosylation of an α-(1→4)-linked Glc-GalN3 unit, did not lead to the target trisaccharide backbone. Further O-deacetylation, azido group reduction and debenzylation of the protected trisaccharide precursor gave the corresponding trisaccharide amine. The latter structure was used in the synthesis of a series of trisaccharides bearing an acetyl group, an l-alanine or an N-acetylated l-alanine residue on its amino group at C-2 of GalN.  相似文献   

20.
We demonstrate that photochemical functionalization can be used to functionalize and photopattern the surface of gallium nitride crystalline thin films with well-defined molecular and biomolecular layers. GaN(0001) surfaces exposed to a hydrogen plasma will react with organic molecules bearing an alkene (C=C) group when illuminated with 254 nm light. Using a bifunctional molecule with an alkene group at one end and a protected amine group at the other, this process can be used to link the alkene group to the surface, leaving the protected amine exposed. Using a simple contact mask, we demonstrate the ability to directly pattern the spatial distribution of these protected amine groups on the surface with a lateral resolution of <12 mum. After deprotection of the amines, single-stranded DNA oligonucleotides were linked to the surface using a bifunctional cross-linker. Measurements using fluorescently labeled complementary and noncomplementary sequences show that the DNA-modified GaN surfaces exhibit excellent selectivity, while repeated cycles of hybridization and denaturation in urea show good stability. These results demonstrate that photochemical functionalization can be used as an attractive starting point for interfacing molecular and biomolecular systems with GaN and other compound semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号