首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The four-coordinate compound [(tBu2PCH2SiMe2)2N]RuCH3 undergoes rapid double H-C(sp3) activation at -78 degrees C to generate a "hydrido-carbene" complex. DFT calculations suggest that the origin of the low barrier to methane elimination is an alpha-agostic interaction in the low-lying singlet state of the highly unsaturated (PNP)RuMe. The hydrido-carbene complex can be viewed as a "masked" resting state of the four-coordinate cyclometalated alkyl complex, [(tBu2PCH2SiMe2)N(Me2SiCH2P(tBu)(C(CH3)2CH2)]Ru, where hydride migration from metal to carbon occurs before any subsequent reactivity.  相似文献   

2.
Binuclear zinc(II) and copper(II) complexes based on a new Schiff base ligand N,N'-bis(2-hydroxybenzilidene)-2,4,6-trimethylbenzene-1,3-diamine (H(2)L) have been synthesized. The ligand H(2)L and complexes under investigation have been characterized by elemental analyses, spectral (FT-IR, (1)H, (13)C NMR, ESI-MS, electronic absorption, emission), and electrochemical studies. The structures of H(2)L and complexes [{Zn(C(23)H(18)N(2)O(2))}(2)] (1) and [{Cu(C(23)H(18)N(2)O(2))}(2)]·H(2)O (2) have been determined crystallographically. Selective "On-Off-On" switching behavior of the fluorescent complex 1 has been studied. The fluorescence intensity of 1 quenches (turns-off) upon addition of Cu(2+), while enhances (turns-on) in the presence of Ag(+) ions. The mechanisms of "On-Off-On" signaling have been supported by (1)H NMR, ESI-MS, electronic absorption, and emission spectral studies. Job's plot analysis supported 1:1 and 1:2 stoichiometries for Cu(2+) and Ag(+) ions, respectively. Association and quenching constants have been estimated by the Benesi-Hildebrand method and Stern-Volmer plot. Moreover, 1 mimics a molecular keypad lock that follows correct chemical input order to give maximum output signal.  相似文献   

3.
The spin-orbit (A = -16.4 cm(-1)) and rotational (B = 1.017 cm(-1)) constants for the N2 C" 5Pi(ui)(v = 3) level are determined by a fit to rotational lines in the C" 5Pi(u)-A' 5Sigma(g)+(3-1) band that terminate in J'Omega' = 3(3), 4(3), 3(2), and 4(2) levels of the C" state. The C"-state spin-orbit constant is consistent with semi-empirical estimates, based on spin-orbit constants observed in several other electronic states of N2 and the atomic spin-orbit coupling constant, zeta(N 2p). The C"-A' bands exhibit the unusual feature of oppositely degraded sub-band heads, Omega' = 3 (red) and Omega' = 1, 0, and -1 (blue). The unusually wide range of B(Omega)eff values, from 0.85 cm(-1) (Omega = 3) to 1.28 cm(-1) (Omega = -1) for C" 5Pi(v = 3) should be diagnostically useful for Omega'-assignments. The C" 5Pi(v = 3) level lies 14257.17 and 90599 cm(-1) above A' 5Sigma(g)+(v = 1) and X 1Sigma(g)+(v = 0), respectively, and Re(C" 5Pi) = 1.50 A.  相似文献   

4.
The reaction of RH (1) with Hg(OAc)(2), in EtOH, gave the acetate RHgOAc (2) [R = 2,6-[O(CH(2)CH(2))(2)NCH(2)](2)C(6)H(3)]. The corresponding RHgCl (3) was obtained from 2 and LiCl. The reaction of 3 with TeCl(4) (1:1 molar ratio), in anhydrous 1,4-dioxane, resulted in the transfer of the organic ligand from mercury to tellurium and the isolation of the unexpected ionic compounds [RTe](2)[Hg(2)Cl(6)] (4) and [RH(3)][HgCl(4)] (5). The molecular structures of 1-4 and 5·H(2)O were established by single-crystal X-ray diffraction. The acetate 2 and the chloride 3 are monomeric in solid state. In both mercury and tellurium organometallic compounds the organic group acts as an (N,C,N) "pincer" ligand. This coordination pattern provided stability for the rare [RTe](+) cation. Weak cation-anion interactions [Te···Cl 3.869(3) ?] are present between [RTe](+) and the dinuclear anion [Hg(2)Cl(6)](2-) in the crystal of 4. Theoretical calculations with DFT methods were performed for models of 3 and 4. The results show that in the cation of 4 the coordination of the nitrogen atoms play an important role for the stabilization of the structure found in the crystal whereas in 3 the coordination of the nitrogen atoms to the metal centre stabilizes to a less extent the structure found in solid state.  相似文献   

5.
The title compound, C26H20N6BrRu(BF4), crystallizes in the centrosymmetric space group P2(1)/n and consists of discrete complex units. The Ru(II) ion is octahedrally coordinated to one 2,2':6',2"-terpyridine (tpy), one 2-(phenylazo)pyridine (azpy) and a Br atom in trans-axial position at a distance of 2.547(5)A. The shorter Ru-N (azo) distance (1.960(3)A) than the Ru-N(py) distance (2.061(3)A) signifies a strong pi-backbonding, which leads to a longer, N=N (azo) bond (1.304(4)A).  相似文献   

6.
Some cis,cis,cis-RuX(2)(Me(2)SO)(2)(1,2-Me(2)Im)L complexes [L = 1,2-Me(2)Im (1,2-dimethylimidazole) or Me(3)Bzm (1,5,6-trimethylbenzimidazole), X = Cl or Br, and Me(2)SO = S-bonded DMSO] have been synthesized and their rotamers studied in CDCl(3). From 2D NMR data, cis,cis,cis-RuCl(2)(Me(2)SO)(2)(1,2-Me(2)Im)(Me(3)Bzm) has 1,2-Me(2)Im in position "a" (cis to both Me(2)SO's and cis to "b") and Me(3)Bzm in position "b" (trans to one Me(2)SO and cis to the other). There are two stable atropisomers [head-to-tail (HT, 84%) and head-to-head (HH, 16%), defining the aromatic H of Ru-N-C-H as head for both ligands]. Me(3)Bzm has the same orientation in both atropisomers. In this orientation, the unfavorable interligand steric interactions of Me(3)Bzm with the Me(2)SO and 1,2-Me(2)Im ligands appear to be countered by favorable electrostatic attraction between the delta+ N(2)CH moiety of Me(3)Bzm and the delta- cis Cl ligands. The 1,2-Me(2)Im lacks a delta+ N(2)CH group, and its orientation is dominated by steric effects of the 2-Me group. The NMR spectrum of cis,cis,cis-RuCl(2)(Me(2)SO)(2)(1,2-Me(2)Im)(2) is consistent with four rotamers in restricted rotation about both Ru-N bonds: two HH and two HT. 2D NMR techniques (NOESY and ROESY) afforded complete proton signal assignments. The ligand disposition could be assessed from the large chemical shift dispersion of some 1,2-Me(2)Im ligand signals (Delta 0.86-1.52 ppm) arising from cis-1,2-Me(2)Im shielding modulated by deshielding influences of the cis halides. The relative stability of the four rotamers correlates best with steric interactions between the 2-Me groups and the Me(2)SO ligands. The most favorable conformer (46%) is the HH rotamer with both 2-Me groups pointing away from the Me(2)SO ligands. The least favorable conformer (14%) was also HH, but the methyl groups in this case point toward the Me(2)SO ligands. In the HT conformers of intermediate stability ( approximately 20%), one 2-Me group is toward and the other is away from the Me(2)SO ligands. The exchange cross-peaks in the 2D spectra are unusually informative about the dynamic processes in solution; the spectra provide evidence that the rotamers interchange in a definite pattern of succession. Thus, all conceivable exchange pathways are not available. 1,2-Me(2)Im "b" can rotate regardless of the orientation of 1,2-Me(2)Im "a". 1,2-Me(2)Im "a" can rotate only when "b" has the orientation with its 2-Me group directed away from "a". Thus, 1,2-Me(2)Im "b" can switch 1,2-Me(2)Im "a" rotation on or off.  相似文献   

7.
New Mn(III) complexes with Schiff bases and dicyanamide are synthesized: [Mn(Salpn)N(CN)2] n (two polymorphous modifications, Ia and Ib), {[Mn(5-BrSalen)N(CN)2] · CH3OH} n (II), and [Mn(3-MeOSalen)N(CN)2(H2O)] (III), where SalpnH2 = N,N′-bis(salicylidene)-1,3-diaminopropane, 5-BrSalenH2 = N,N′-bis(5-bromosalicylidene)-1,2-diaminoethane, and 3-MeOSalenH2 = N,N′-bis(3-methoxysalicylidene)-1,2-diaminoethane. Complexes Ia, Ib, and II have the polymer structure in which the dicyanamide anion binds the paramagnetic Mn(III) complexes with the Schiff bases into one-dimensional chains. Unlike them, in complex III the monomer units containing water and the dicyanamide anion as terminal ligands form dimers due to hydrogen bonds. The study of the magnetic properties of complexes Ia and II shows a weak antiferromagnetic interaction between the Mn3+ ions through the dicyanamide bridges in these complexes.  相似文献   

8.
Two new trinuclear hetero-metallic copper(ii)-zinc(ii) complexes [(CuL)(2)Zn(N(3))(2)] ( and ) have been synthesized using [CuL] as a so-called "metalloligand" (where H(2)L = N,N'-bis(salicylidene)-1,3-propanediamine) and structurally characterized. Complexes and have the same molecular formula but crystallize in different crystal systems (triclinic for and monoclinic for ) with space group P1[combining macron] for and P2(1)/c for . is an angular trinuclear species, in which two terminal four-coordinate square planar "metalloligand" [CuL] are coordinated to a central Zn(ii) through double phenoxido bridges. The Zn(ii) is in a six-coordinate distorted octahedral environment being bonded additionally to two mutually cis nitrogen atoms of terminal azide ions. In complex , in addition to the double phenoxido bridge, the two terminal Cu(ii) ions are linked to the central Zn(ii) via a μ(-l,l) azido bridge giving rise to a square pyramidal environment around the Cu(ii) ions and consequently the structure becomes linear. These two species can be considered as "linear-bent" isomers. EPR spectra and ESI mass spectra show that the two isomers are identical in solution. The DFT calculation reveals that the energy of is 7.06 kcal mol(-1) higher than that of . The existence of both isomers in the solid state suggests that crystal packing interactions in are more efficient and probably compensate for the difference in energy.  相似文献   

9.
Potential chelating-forming ligands and reagents for heterocyclization — ethyl esters of 4-[N-(R-pyrid-2-yl)carbamoyl]-3-amino-2-cyanobuten-2-oic acids ["codimers" of cyanoacetic acid ethyl ester (EECA) and the corresponding (pyrid-2-yl) amides of this same acid) — were synthesized in two ways: by condensation of 2-dialkylborylamidopyridines (picolines) with EECA (via chelate compounds of boron) and by the reaction of EECA dimer with 2-aminopyridines (picolines).N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, 117913 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 2, pp. 371–376, February, 1992.  相似文献   

10.
Summary New coligand isomers of composition Cu{N(CN)2}2(pz)2 and Cu{pz · N(CN)2}2 (pz = pyrazole) were prepared and studied by measuring their magnetic susceptibilities up to 4.2K and by aid of their e.s.r., ligand field and i.r. spectra. The susceptibility data have been analysed with various models for the exchange-coupled copper(II) polymers. It is shown that the resultant exchange coupling is ferromagnetic for Cu{N(CN)2}2(pz)2 (J 1.1 - 1.4 cm–1) but antiferromagnetic for Cu{pz · N(CN)2}2 (J –0.4 cm–1). A polymeric chain structure is proposed for Cu{N(CN)2}2(pz)2 havingpseudo-octahedrally coordinated copper(II) and CN-bridging dicyanamide ligands. Its coligand isomer contains anionic chelate ligands, formed by nucleophilic addition between N(CN)2 and pz in the copper(II) coordination sphere, and giving with this central atom a square-planar system. Definite, but slight axial interaction takes place between these structure units.  相似文献   

11.
Aryl bromides react with (H(2)NCH(2)CH(2))(3)N in a reaction catalyzed by Pd(2)(dba)(3) in the presence of BINAP and NaO-t-Bu to give the arylated derivatives (ArylNHCH(2)CH(2))(3)N [Aryl = C(6)H(5) (1a), 4-FC(6)H(4) (1b), 4-t-BuC(6)H(4) (1c), 3,5-Me(2)C(6)H(3) (1d), 3,5-Ph(2)C(6)H(3) (1e), 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3) (1f), 2-MeC(6)H(4) (1g), 2,4,6-Me(3)C(6)H(2) (1h)]. Reactions between (ArNHCH(2)CH(2))(3)N (Ar = C(6)H(5), 4-FC(6)H(4), 3,5-Me(2)C(6)H(3), and 3,5-Ph(2)C(6)H(3)) and Mo(NMe(2))(4) in toluene at 70 degrees C lead to [(ArNHCH(2)CH(2))(3)N]Mo(NMe(2)) complexes in yields ranging from 64 to 96%. Dimethylamido species (Ar = 4-FC(6)H(4), 3,5-Me(2)C(6)H(3)) could be converted into paramagnetic [(ArNHCH(2)CH(2))(3)N]MoCl species by treating them with 2,6-lutidinium chloride in tetrahydrofuran (THF). The "direct reaction" between 1a-f and MoCl(4)(THF)(2) in THF followed by 3 equiv of MeMgCl yielded [(ArNHCH(2)CH(2))(3)N]MoCl species (3a-f) in high yield. If 4 equiv of LiMe instead of MeMgCl are employed in the direct reaction, then [(ArNHCH(2)CH(2))(3)N]MoMe species are formed. Tungsten species, [(ArNHCH(2)CH(2))(3)N]WCl, could be prepared by analogous "direct" methods. Cyclic voltammetric studies reveal that MoCl complexes become more difficult to reduce as the electron donating ability of the [ArylNCH(2)CH(2))(3)N]3- ligand increases, and the reductions become less reversible, consistent with ready loss of chloride from ([(ArNHCH(2)CH(2))(3)N]MoCl)(-). Tungsten complexes are more difficult to reduce, and reductions are irreversible on the CV time scale.  相似文献   

12.
To model the Ti-olefin interaction in the putative [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(R')(olefin)(+) intermediates in "constrained geometry" Ti-catalyzed olefin polymerization, chelated alkoxide olefin complexes [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))(+) have been investigated. The reaction of [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(2) (1a,b; R = H, Me) with HOCMe(2)CH(2)CH(2)CH=CH(2) yields mixtures of [eta(5)-C(5)R(4)SiMe(2)NH(t)Bu]TiMe(2)(OCMe(2)CH(2)CH(2)CH=CH(2)) (2a,b) and [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(OCMe(2)CH(2)CH(2)CH=CH(2)) (3a,b). The reaction of 2a/3a and 2b/3b mixtures with B(C(6)F(5))(3) yields the chelated olefin complexes [[eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][MeB(C(6)F(5))(3)] (4a,b; 71 and 89% NMR yield). The reaction of 2b/3b with [Ph(3)C][B(C(6)F(5))(4)] yields [[eta(5): eta(1)-C(5)Me(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][B(C(6)F(5))(4)] (5b, 88% NMR yield). NMR studies establish that 4a,b and 5b exist as mixtures of diastereomers (isomer ratios: 4a/4a', 62/38; 4b/4b', 75/25; 5b/5b', 75/25), which differ in the enantioface of the olefin that is coordinated. NMR data for these d(0) metal olefin complexes show that the olefin coordinates to Ti in an unsymmetrical fashion primarily through C(term) such that the C=C pi bond is polarized with positive charge buildup on C(int). Dynamic NMR studies show that 4b/4b' undergoes olefin face exchange by a dissociative mechanism which is accompanied by fast inversion of configuration at Ti ("O-shift") in the olefin-dissociated intermediate. The activation parameters for the conversion of 4b to 4b' (i.e., 4b/4b' face exchange) are: DeltaH = 17.2(8) kcal/mol; DeltaS = 8(1) eu. 4a/4a' also undergoes olefin face exchange but with a lower barrier (DeltaH = 12.2(9) kcal/mol; DeltaS = -2(3) eu), for the conversion of 4a to 4a'.  相似文献   

13.
One calcium nitride less! Several different binary nitrides of calcium have been reported: Ca(3)N(2), Ca(2)N, Ca(3)N(4), and Ca(11)N(8). X-ray structural analysis and spectroscopy revealed the latter is actually calcium nitride cyanamide and one of, so far, two examples of a new class of ternary phases (see boxes in the phase diagram).  相似文献   

14.
Complexes [Mg(thd)2(A)] (Hthd = 2,2,6,6-tetramethyl-3,5-heptanedione; A = ethylenediamine, en (2); N,N'-dimethylethylenediamine, dmeda (3); N,N'-diethylethylenediamine, deeda (4); N,N,N',N'-tetramethylethylenediamine, tmeda (5); diethylenetriamine, dien (6); triethylenetetra-amine, trien (7); 1,2-ethanediol (8)) and [Mg(thd)2(EtOH)]2(1,3-propanediol) (9) were prepared and characterized by NMR spectroscopy, mass spectrometry, and thermal analysis. Crystal structures of compounds 2, 5, and 7 are presented. In all structures, Mg exhibits distorted six-coordination, with four shorter distances between Mg and keto-oxygens and two longer distances between Mg and nitrogen atoms (2, 5, 7). The structure of 2 consists of two monomeric complexes which form an asymmetric unit. The structure of 7 is similar to 2, but the trien molecule has coordinated through one terminal and one vicinal N atom to Mg. All complexes containing amines evaporated almost completely, but the complex 8, which contained 1,2-ethanediol, was thermally unstable and decomposed when heated. At temperatures below the dissociation temperature, all adducts of diamines appeared to evaporate intact.  相似文献   

15.
Efficient synthesis of heteroleptic tris-cyclometalated Ir(III) complexes mer-Ir(C(/\)N)(2)(trpy) (trpy = 2-(1H-[1,2,3]triazol-4-yl)pyridine) is achieved by using the Cu(I)-triazolide intermediates formed in "click" reactions as transmetalating reagents. Ligand preparation and cyclometalation of Ir(III) is accomplished in one pot. The robust nature of click chemistry provides opportunities to introduce different functional groups to the cyclometalated system, for example, alkyl, perfluoroalkyl, and aryl moieties. All of the meridional isomers show short-lived phosphorescence at room temperature, both in solution and in the solid state. DFT calculations indicates that the phosphorescence of mer-Ir(C(/\)N)(2)(trpy) is attributed to the (3)MLCT and (3)LC mixed excited states, also supported by the broad spectral shape and hypsochromic shift upon media rigidification. The luminescence efficiency and excited state lifetimes of the cyclometalated complexes can be tuned by varying the substituents on the triazole ring, while the emission color is mainly determined by the phenylpyridine-based ligands. Moreover, the trpy ligand can acquire the N(/\)N chelating mode under selective reaction conditions. mer-Ir(C(/\)N)(2)(trpy) complexes isomerize into cationic [Ir(C(/\)N)(2)(N(/\)N_trpy)](+) species instead of their fac isomers upon heating or UV radiation. This can be explained by the strong trans influence exerted by the phenyl groups. The weakened Ir-C(trpy) bonds are likely to be activated and protonated, leading to the switch of the trpy ligand to a thermodynamically more stable N(/\)N chelating mode.  相似文献   

16.
The well-known tetradentate ligand 1,2-bis(pyridine-2-carboxamido)benzenate(2-), (bpb)2-, and its 4,5-dichloro analogue, (bpc)2-, are shown to be "noninnocent" ligands in the sense that in coordination compounds they can exist in their radical one- and diamagnetic two-electron-oxidized forms (bpbox1)- and (bpbox2)0 (and (bpcox1)- and (bpcox2)0), respectively. Photolysis of high-spin [(n-Bu)4N][FeIII(bpb)(N3)2] and its (bpc)2- analogue in acetone solution at room temperature generates the diamagnetic dinuclear complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(N3)2] and its (bpc)2- analogue; the corresponding cyano complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2] has been prepared via N3- substitution by CN-. Photolysis in frozen acetonitrile solution produces a low-spin ferric species (S = 1/2) which presumably is [FeIII(bpbox2)(N)(N3)]-, as has been established by EPR and M?ssbauer spectroscopy. The mononuclear complexes [(n-Bu)4N][FeIII(bpb)(CN2)] (low spin), [Et4N][CoIII(bpb)(CN)2] and Na[CoIII(bpc)-(CN)2].3CH3OH can be electrochemically or chemically one-electron-oxidized to give [FeIII(bpbox1)(CN)2]0 (S = 0), [CoIII(bpbox1)(CN)2]0 (S = 1/2), and [CoIII(bpcox1)(CN)2]0 (S = 1/2). All complexes have been characterized by UV-vis, EPR, and M?ssbauer spectroscopy, and their electro- and magnetochemistries have been studied. The crystal structures of [(n-Bu)4N][FeIII(bpb)(N3)2].1/2C6H6CH3, Na[FeIII(bpb)(CN)2], Na[CoIII(bpc)(CN)2].3CH3OH, [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2], and [(n-Bu)4N][FeIV2(mu-N)(bpb)(N3)2] have been determined by single-crystal X-ray diffraction.  相似文献   

17.
We have developed an experimental setup using the combination of laser optogalvanic detection and a supersonic expansion of excited N2 to record the high resolution spectrum of the (3-1) and (4-2) Herman infrared bands (C" 5Pi(ui)-A' 5Sigma(g)+). We report the first experimental determination of a spin-orbit interval (about 24 cm(-1)) in the C" 5Pi(ui) state of N2 for both the (3-1) and (4-2) vibrational bands as well as the first observation of the v' = 4 vibrational level.  相似文献   

18.
Yang W  Schmider H  Wu Q  Zhang YS  Wang S 《Inorganic chemistry》2000,39(11):2397-2404
Three novel Zn(II) complexes containing either 2,2',2"-tripyridylamine (2,2',2"-tpa) or 2,2',3"-tripyridylamine (2,2',3"-tpa) have been synthesized and structurally characterized. Compound 1, Zn(2,2',2"-tpa)Cl2, has a tetrahedral geometry while compounds 2, Zn(2,2',2"-tpa)2(O2CCF3)2, and 3, Zn(2,2',3"-tpa)4(O2CCF3)2, have an octahedral geometry. The 2,2',2"-tpa ligand in 1 and 2 functions as a bidentate ligand, chelating to the zinc center, while the 2,2",3"-tpa ligand in 3 functions as a terminal ligand, binding to the zinc center through the 3-pyridyl nitrogen atom. All three compounds emit a blue color in solution and in the solid state. The emission maxima for the three compounds in solution are at lambda = 422, 426, and 432 nm, respectively. The blue luminescence of the complexes is due to a pi *-->pi transition of the tpa ligand as established by an ab initio calculation on the free ligand 2,2',2"-tpa and complex 1. Compounds 1 and 2 are fluxional in solution owing to an exchange process between the coordinate and noncoordinate 2-pyridyl rings of the 2,2',2"-tpa ligand. Compound 2 is also fluxional owing to a cis-trans isomerization process, as determined by variable-temperature 1H NMR spectroscopic analysis.  相似文献   

19.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

20.
Crystal and Molecular Structure of (CH3)2SnSAB. (SAB = Dianion of 2-Hydroxy-N-(2-hydroxybenzylidene)-aniline) (CH3)2SnSAB, C15H15NO2Sn (SAB = tridentate dianion of 2-hydroxy-N-(2-hydroxybenzylidene)-aniline in SCHIFF base form) crystallizes in the space group Pben (D) with a = 19.271(5), b = 10.508(2), c = 13.379(1) Å and Z = 8. The structure has been solved using 1307 symmetrical independent reflections and applying the heavy atom method; the position of all atoms, except the H atoms, has been determined. As interatomic distances have been found: Sn? C: 2.117(14), Sn? O:2.112(9), Sn? N:2.229(11) N? C 10 (phenyl group II): 1.462(16), C9-N (SCHIFF base bridging group): 1.257(18), C 9? C8 (phenyl group I): 1.441(18) Å; mean C? C distances in the phenyl groups: 1.403(18) Å. Two molecules at a time have a centre of symmetry and weakly coordinate through two loose Sn? O bridges (intermolecular Sn? O distance: 2.881(8) Å). The individual molecules essentially form a distorted trigonal bipyramid with N and both methyl-C atoms in the equatorial plane; ? CSnC = 138.52(50)°; ? OSnO = 158.58(35)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号