首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Formation of oligonucleotide-PNA-chimeras by template-directed ligation   总被引:1,自引:0,他引:1  
DNA sequences have previously been reported to act as templates for the synthesis of PNA, and vice versa. A continuous evolutionary transition from an informational replicating system based on one polymer to a system based on the other would be facilitated if it were possible to form chimeras, that is molecules that contain monomers of both types. Here we show that ligation to form chimeras proceeds efficiently both on PNA and on DNA templates. The efficiency of ligation is primarily determined by the number of backbone bonds at the ligation site and the relative orientation of template and substrate strands. The most efficient reactions result in the formation of chimeras with ligation junctions resembling the structures of the backbones of PNA and DNA and with antiparallel alignment of both components of the chimera with the template, that is, ligations involving formation of 3'-phosphoramidate and 5'-ester bonds. However, double helices involving PNA are stable both with antiparallel and parallel orientation of the two strands. Ligation on PNA but not on DNA templates is, therefore, sometimes possible on templates with reversed orientation. The relevance of these findings to discussions of possible transitions between genetic systems is discussed.  相似文献   

2.
A systematic approach evaluating template-directed ligation reactions has now resulted in a simple outline for a two-stage replication cycle. This cycle builds on an efficient method for reading the information encoded in DNA into an amplified translation product. It is further demonstrated that the translation product strand is capable of catalyzing the synthesis of the original DNA strand. We propose that this cycle represents just one of many possible solutions; other chemical ligation or polymerization reactions could be accommodated with different templates. In that context, a new template, derived by modest changes to the DNA backbone, has been developed and has been shown to hybridize under reaction conditions different than those accessible to DNA. Therefore, the conceptual groundwork has been laid for extending this approach to encoding and reading stored information in molecules other than the natural biopolymers at the densities found in biology.  相似文献   

3.
Pairs of polystyrene‐based random copolymers with balanced number of pendant basic or acidic groups were synthesized utilizing the template strategy. The same poly[(4‐hydroxystyrene)‐ran‐styrene] was used as a template backbone for modification. Two different synthetic approaches for the functionalization were applied. The first one involved direct functionalization of the template backbone through alkylation of the phenolic groups with suitable reagents. The second modification approach was based on “click” chemistry, where the introduction of alkyne groups onto the template backbone was followed by copper‐catalyzed 1,3 cycloaddition of aliphatic sulfonate‐ or amine‐contaning azides. Both synthetic approaches proved to be highly efficient as evidenced by 1H‐NMR analyses. The thermal properties were evaluated by differential scanning calorimetry and thermal gravimetric analyses and were influenced by the type of functionality and the modification method. The ether‐linked functional colopymers were thermally more stable than their “clicked” analogues. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2044–2052, 2010  相似文献   

4.
Pyrene as well as other aromatic hydrocarbons could be successfully incorporated into pyrrolidinyl peptide nucleic acid bearing a d-prolyl-2-aminocyclopentane carboxylic acid backbone (acpcPNA) as a base surrogate via a triazole linker employing Cu-catalyzed alkyne–azide cycloaddition (click chemistry). The labeling can be performed via a pre-clicked pyrene monomer or by post-synthetic modification of azide-containing acpcPNA on solid support. Thermal denaturation experiments suggested that the pyrene–triazole unit can behave as a universal base in the acpcPNA system. The mode of base-pairing has been proposed based on molecular dynamics simulations. Importantly, the fluorescence spectra of the pyrene-labeled single stranded acpcPNA and its hybrid with DNA are quite different. The ratio of emissions at 380 and 460 nm changed significantly (up to a factor of 7) upon hybrid formation with complementary DNA.  相似文献   

5.
Optical spectroscopy and molecular dynamics simulations have been used to study the interaction between a cationic cyanine dye and peptide nucleic acid (PNA)-DNA duplexes. This recognition event is important because it leads to a visible color change, signaling successful hybridization of PNA with a complementary DNA strand. We previously proposed that the dye recognized the minor groove of the duplex, using it as a template for the assembly of a helical aggregate. Consistent with this, we now report that addition of isobutyl groups to the PNA backbone hinders aggregation of the dye when the substituents project into the minor groove but have a weaker effect if directed out of the groove. UV-Visible and circular dichroic spectroscopy were used to compare aggregation on the different PNA-DNA duplexes, while molecular dynamics simulations were used to confirm that the substituents block the minor groove to varying degrees, depending on the configuration of the starting amino acid. In addition to a simple steric blockage effect of the substituent, the simulations suggest that directing the isobutyl group into the minor groove causes the groove to narrow and the duplex to become more rigid, structural perturbations that are relevant to the growing interest in backbone-modified PNA for applications in the biological and materials sciences.  相似文献   

6.
“分子梳”是DNA被可移动的气-液界的均匀拉直,该技术涉及两个过程:DNA分子末端与基底表面的特异性结合和移动的气-液界面对DNA分子的均匀拉直。该技术在构建纳米材料/结构,研究DNA转录和复制,绘制基因物理图谱等方面得到了应用。预计“分子梳”技术将在以下方面取得进展:以拉直的DNA为模板构建纳米器件和纳米材料;用于基因突变的临床检测;结合原子力显微术(AFM),建立“原子力显微术原位杂交”技术以替代荧光原位杂交。  相似文献   

7.
DNA polymerase fidelity is of immense biological importance due to the fundamental requirement for accurate DNA synthesis in both replicative and repair processes. Subtle hydrogen-bonding networks between DNA polymerases and their primer/template substrates are believed to have impact on DNA polymerase selectivity. We show that deleting defined interactions of that kind by rationally designed hydrophobic substitution mutations can result in a more selective enzyme. Furthermore, a single-atom replacement within the DNA substrate through chemical modification, which leads to an altered acceptor potential and steric demand of the DNA substrate, further increased the selectivity of the developed systems. Accordingly, this study about the impact of hydrophobic alterations on DNA polymerase selectivity--enzyme and substrate wise--further highlights the relevance of shape complementary and polar interactions on DNA polymerase selectivity.  相似文献   

8.
Efficient DNA nick sealing catalyzed by T4 DNA ligase was carried out on a modified DNA template in which an intercalator such as azobenzene had been introduced. The intercalator was attached to a D-threoninol linker inserted into the DNA backbone. Although the structure of the template at the point of ligation was completely different from that of native DNA, two ODNs could be connected with yields higher than 90% in most cases. A systematic study of sequence dependence demonstrated that the ligation efficiency varied greatly with the base pairs adjacent to the azobenzene moiety. Interestingly, when the introduced azobenzene was photoisomerized to the cis form on subjection to UV light (320-380 nm), the rates of ligation were greatly accelerated for all sequences investigated. These unexpected ligations might provide a new approach for the introduction of functional molecules into long DNA strands in cases in which direct PCR cannot be used because of blockage of DNA synthesis by the introduced functional molecule. The biological significance of this unexpected enzymatic action is also discussed on the basis of kinetic analysis.  相似文献   

9.
Peptide nucleic acid (PNA) is a synthetic analogue of DNA and RNA, developed more than a decade ago in which the naturally occurring sugar phosphate backbone has been replaced by the N-(2-aminoethyl) glycine units. Unlike DNA or RNA in the unhybridized state (single strand) which can adopt a helical structure through base-stacking, although highly flexible, PNA does not have a well-defined conformational folding in solution. Herein, we show that a simple backbone modification at the gamma-position of the N-(2-aminoethyl) glycine unit can transform a randomly folded PNA into a helical structure. Spectroscopic studies showed that helical induction occurs in the C- to N-terminal direction and is sterically driven. This finding has important implication not only on the future design of nucleic acid mimics but also on the design of novel materials, where molecular organization and efficient electronic coupling are desired.  相似文献   

10.
The copper-catalyzed azide-alkyne cycloaddition reaction has been used for the template-mediated chemical ligation of two oligonucleotide strands, one with a 5'-alkyne and the other with a 3'-azide, to produce a DNA strand with an unnatural backbone at the ligation point. A template-free click-ligation reaction has been used for the intramolecular circularization of a single stranded oligonucleotide which was used as a template for the synthesis of a covalently closed DNA catenane.  相似文献   

11.
Quantitative determination of surface coverage, film thickness and molecular orientation of DNA oligomers covalently attached to aminosilane self‐assembled monolayers has been obtained using complementary infrared and photoelectron studies. Spectral variations between surface immobilized oligomers of the different nucleic acids are reported for the first time. Carbodiimide condensation was used for covalent attachment of phosphorylated oligonucleotides to silanized aluminum substrates. Fourier transform infrared (FTIR) spectroscopy and x‐ray photoelectron spectroscopy (XPS) were used to characterize the surfaces after each modification step. Infrared reflection–absorption spectroscopy of covalently bound DNA provides orientational information. Surface density and layer thickness are extracted from XPS data. The surface density of immobilized DNA, 2–3 (×1013) molecules cm?2, was found to depend on base composition. Comparison of antisymmetric to symmetric phosphate stretching band intensities in reflection–absorption spectra of immobilized DNA and transmission FTIR spectra of DNA in KBr pellet indicates that the sugar–phosphate backbone is predominantly oriented with the sugar–phosphate backbone lying parallel to the surface, in agreement with the 10–20 Å DNA film thickness derived from XPS intensities. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Peptide nucleic acids (PNAs) are non-natural nucleic acid mimics that bind to complementary DNA and RNA with high affinity and selectivity. PNA can bind to nucleic acids in a number of different ways. Currently, the formation of PNA-oligonucleotide duplex, triplex, and quadruplex structures have been reported. PNAs have been used in numerous biomedicial applications, but there are few strategies to predictably improve the binding properties of PNAs by backbone modification. We have been studying the benefits of incorporating (S,S)-trans-cyclopentane diamine units (tcyp) into the PNA backbone. In this Communication, we report the improvement in stability associated with tcyp incorporation into PNA-DNA duplexes, triplexes, and quadruplexes. The broad utility of this modification across multiple types of PNA structures is unique and should prove useful in the development of applications that rely on PNA.  相似文献   

13.
Protein O-GlcNAcylation is an essential reversible posttranslational modification in higher eukaryotes. O-GlcNAc addition and removal is catalyzed by O-GlcNAc transferase and O-GlcNAcase, respectively. We report the molecular details of the interaction of a bacterial O-GlcNAcase homolog with three different synthetic glycopeptides derived from characterized O-GlcNAc sites in the human proteome. Strikingly, the peptides bind a conserved O-GlcNAcase substrate binding groove with similar orientation and conformation. In addition to extensive contacts with the sugar, O-GlcNAcase recognizes the peptide backbone through hydrophobic interactions and intramolecular hydrogen bonds, while avoiding interactions with the glycopeptide side chains. These findings elucidate the molecular basis of O-GlcNAcase substrate specificity, explaining how a single enzyme achieves cycling of the complete O-GlcNAc proteome. In addition, this work will aid development of O-GlcNAcase inhibitors that target the peptide binding site.  相似文献   

14.
Threose nucleic acid (TNA), which has a repeat unit one atom shorter than that of DNA, is capable of Watson-Crick base pairing with DNA, RNA, and TNA. Because of its chemical simplicity, TNA is considered to be a possible progenitor of RNA. As an initial step toward developing the molecular tools necessary to investigate the functional capabilities of TNA by in vitro selection, we have screened a variety of DNA polymerases for TNA synthesis activity on a DNA template. We wish to report that several polymerases show surprisingly good ability to synthesize TNA using alpha-l-threofuranosyl thymidine-3'-triphosphate as a substrate.  相似文献   

15.
To create bioorganic hybrid materials, interdisciplinary work in the fields of chemistry, biology and materials science is conducted. DNA block copolymers are promising hybrid materials due to the combination of properties intrinsic to both the polymer and the nucleic acid blocks. Until now, the coupling of DNA and organic polymers has been exercised post‐synthetically in solution or on solid support. Herein, we report the first enzyme‐catalysed synthesis of DNA–organic polymer chimeras. For this purpose, four novel 2′‐deoxyuridine triphosphates carrying polymer‐like moieties linked to the nucleobase were synthesised. Linear polyethylene glycol monomethyl ethers of different sizes ( 1 ) and branched polyamido dendrons with varying terminal groups ( 2 ) were chosen as building blocks. We investigated the ability of DNA polymerases to accept the copolymers in comparison to the natural substrate and showed, through primer extensions, polymerase chain reactions and rolling circle amplification, that these building blocks could serve as a surrogate for the natural thymidine. By this method, DNA hybrid materials with high molecular weight, modification density, and defined structure are accessible.  相似文献   

16.
17.
Catalyzing the covalent modification of aliphatic amino groups, such as the lysine (Lys) side chain, by nucleic acids has been challenging to achieve. Such catalysis will be valuable, for example, for the practical preparation of Lys‐modified proteins. We previously reported the DNA‐catalyzed modification of the tyrosine and serine hydroxy side chains, but Lys modification has been elusive. Herein, we show that increasing the reactivity of the electrophilic reaction partner by using 5′‐phosphorimidazolide (5′‐Imp) rather than 5′‐triphosphate (5′‐ppp) enables the DNA‐catalyzed modification of Lys in a DNA‐anchored peptide substrate. The DNA‐catalyzed reaction of Lys with 5′‐Imp is observed in an architecture in which the nucleophile and electrophile are not preorganized. In contrast, previous efforts showed that catalysis was not observed when Lys and 5′‐ppp were used in a preorganized arrangement. Therefore, substrate reactivity is more important than preorganization in this context. These findings will assist ongoing efforts to identify DNA catalysts for reactions of protein substrates at lysine side chains.  相似文献   

18.
纳米团簇的超分子自组装   总被引:10,自引:0,他引:10  
在纳米材料的应用过程中, 纳米团簇或纳米粒子的组装将是非常关键的一步。纳米团簇的超分子化学组装方法可分为两类, 即胶态晶体法和模板法。胶态晶体法是利用胶体溶液的自组装特性将纳米团簇组装成超晶格, 可得到二维或三维有序的超晶格。模板法是利用纳米团簇与组装模板间的识别作用来带动团簇的组装, 可应用的模板有固体膜、单分子膜、有机分子、生物分子等。其中, 单分子膜模板是研究最多也是最为成熟的一种; 生物分子间严密的分子识别功能使其成为非常有发展前途的组装模板, 而且用生物分子模板有可能实现不同纳米团簇间的组装。  相似文献   

19.
Electron capture dissociation (ECD) has been demonstrated to be an effective fragmentation technique for characterizing the site and structure of the fatty acid modification in ghrelin, a 28-residue growth-hormone-releasing peptide that has an unusual ester-linked n-octanoyl (C8:0) modification at Ser-3. ECD cleaves 21 of 23 possible backbone amine bonds, with the product ions (c and z· ions) covering a greater amino acid sequence than those obtained by collisionally activated dissociation (CAD). Consistent with the ECD nonergodic mechanism, the ester-linked octanoyl group is retained on all backbone cleavage product ions, allowing for direct localization of this labile modification. In addition, ECD also induces the ester bond cleavage to cause the loss of octanoic acid from the ghrelin molecular ion; the elimination process is initiated by the capture of an electron at the protonated ester group, which is followed by the radical-site-initiated reaction known as -cleavage. The chemical composition of the attached fatty acid can be directly obtained from the accurate Fourier transform ion cyclotron resonance (FTICR) mass measurement of the ester bond cleavage product ions.  相似文献   

20.
Griffin F  Ongaro A  Fitzmaurice D 《The Analyst》2004,129(12):1171-1175
The use of DNA to template the assembly of nanoscale wires and protein-functionalized nanogap contacts is described: Specifically, the use of DNA to template the assembly of gold nanowires between conventionally patterned gold contacts on a silicon wafer substrate. Also described is the use of DNA to template the assembly of protein-functionalized nanogap gold contacts on a silicon wafer substrate. Of particular significance is the finding that suitably modified gold nanoparticles recognize and bind selectively the protein-functionalized nanogap and are localized there.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号