首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A unique coordinated molecular capsule compound is synthesized and characterized by X-ray diffraction. The compound crystallizes in cubic space group of Pa-3 with a=14.348(1), b=14.348(1), c=14.348(1) Å, V=2953.8(4) Å3, Z=8. The diazabicyclo[2.2.2]octane-1,4-diium is occluded in the cubic anionic coordinated framework of K+ and (ClO4) in a dimension of 7.174(1) Å, and assumes ordered feature. All of hydrogen atoms take parts in trifurcated hydrogen bonds of N–HO and C–HO type, respectively, the later being reported for the first time. The IR spectrum of the title compound shows significant shift of CH2 vibrational bands, and are correlated with X-ray structural data.  相似文献   

2.
In situ cryocrystallization has been employed to grow single crystals of 4‐methoxybenzaldehyde (anisaldehyde), C8H8O2, 2‐hydroxybenzaldehyde (salicylaldehyde), C7H6O2, and (2E)‐3‐phenylprop‐2‐enal (cinnamaldehyde), C9H8O, all of which are liquids at room temperature. Several weak C—H...O interactions of the types Caryl—H...O, Cformyl—H...O and Csp3—H...O are present in these related crystal structures.  相似文献   

3.
We suggest that the H-bond in proteins not only mirrors the motion of hydrogen in its own atomistic setting but also finds its origin in the collective environment of the hydrogen bond in a global lattice of surrounding H2O molecules. This water lattice is being perturbed in its optimal entropic configuration by the motion of the H-bond. Furthermore, bonding interaction with the lattice drop the H-bond energy from some 5 kcal/mol for the pure protein in the absence of H2O, to some 1.6 kcal/mol in the presence of the H2O medium. This low value here is determined in a computer experiment involving MD calculations and is a value close to the generally accepted value for biological systems. In accordance with these computer experiments under ambient conditions, the H-bond energy is seriously depressed, hence confirming the subtle effect of the H2O medium directly interacting with the H-bond and permitting a strong fluxional behavior. Furthermore, water produces a very large change in the entropy of activation due to the hydrogen bond breakage, which affects the rate by as much as 2 orders of magnitude. We also observe that there is an entire ensemble of H-bond structures, rather than a single transition state, all of which contribute to this H-bond. Here the model is tested by changing to D2O as the surrounding medium resulting in a substantial solvent isotope effect. This demonstrates the important influence of the environment on the individual hydrogen bond.  相似文献   

4.
Directing group assistance provided a paradigm for controlling site-selectivity in transition metal-catalyzed C–H functionalization reactions. However, the kinetically and thermodynamically favored formation of 5-membered metallacycles has greatly hampered the selective activation of remote C(sp3)–H bonds via larger-membered metallacycles. Recent development to achieve remote C(sp3)–H functionalization via the C–H metallation process largely relies on employing specific substrates without accessible proximal C–H bonds. Encouragingly, recent advances in this field have enabled the selective functionalization of remote aliphatic C–H bonds in the presence of equally accessible proximal ones by taking advantage of the switch of the regiodetermining step, ring strain of metallacycles, multiple non-covalent interactions, and favourable reductive elimination from larger-membered metallacycles. In this review, we summarize these advancements according to the strategies used, hoping to facilitate further efforts to achieve site- and even enantioselective functionalization of remote C(sp3)–H bonds.

Recent advances in site-selective functionalization of remote aliphatic C–H bonds in organometallic pathways are summarized.  相似文献   

5.
Two inclusion compounds of dithiobiurea and tetrapropylammonium and tetrabutylammonium are characterized and reported, namely tetrapropylammonium carbamothioyl(carbamothioylamino)azanide, C12H28N+·C2H5N4S2, (1), and tetrabutylammonium carbamothioyl(carbamothioylamino)azanide, C16H36N+·C2H5N4S2, (2). The results show that in (1), the dithiobiurea anion forms a dimer via N—H...N hydrogen bonds and the dimers are connected into wide hydrogen‐bonded ribbons. The guest tetrapropylammonium cation changes its character to become the host molecule, generating pseudo‐channels containing the aforementioned ribbons by C—H...S contacts, yielding the three‐dimensional network structure. In comparison, in (2), the dithiobiurea anions are linked via N—H...S interactions, producing one‐dimensional chains which pack to generate two‐dimensional hydrogen‐bonded layers. These layers accommodate the guest tetrabutylammonium cations, resulting in a sandwich‐like layer structure with host–guest C—H...S contacts.  相似文献   

6.
Among numerous solvents available for chemical transformations, 1,1,1,3,3,3-hexafluoro-2-propanol (popularly known as HFIP) has attracted enough attention of the scientific community in recent years. Several unique features of HFIP compared to its non-fluoro analogue isopropanol have helped this solvent to make a difference in various subdomains of organic chemistry. One such area is transition metal-catalyzed C–H bond functionalization reactions. While, on one side, HFIP is emerging as a green and sustainable deep eutectic solvent (DES), on the other side, a major proportion of Pd-catalyzed C–H functionalization is heavily relying on this solvent. In particular, for distal aromatic C–H functionalizations, the exceptional impact of HFIP to elevate the yield and selectivity has made this solvent irreplaceable. Recent research studies have also highlighted the H-bond-donating ability of HFIP to enhance the chiral induction in Pd-catalyzed atroposelective C–H activation. This perspective aims to portray different shades of HFIP as a magical solvent in Pd-catalyzed C–H functionalization reactions.

Among numerous solvents available for chemical transformations, 1,1,1,3,3,3-hexafluoro-2-propanol (popularly known as HFIP) has attracted enough attention of the scientific community in recent years.  相似文献   

7.
The crystal structure of the title compound was determined (crystal data at 143 K: triclinic, space group P−1, Z=4, a=9.538(2) Å, b=11.638(2) Å, c=14.473(2) Å, α=88.647(3)°, β=89.875(3)°, γ=83.835(3)°, V=1596.9(4) Å3). In the crystal there exist two kinds of tetrameric O–HO hydrogen-bond (H-bond) systems that are quite similar to each other. The oxygen atoms accept also intermolecular C–HO H-bonds. The two types of the H-bonds connect the molecules to an infinite two-dimensional supramolecular unit, the stacking of which is aided by an intermolecular C–Hπ H-bond. A phase transition with ΔHt=4.4±0.1 kJ/mol was found at around 420 K.  相似文献   

8.
An efficient photocatalytic functionalization of compounds with benzylic C?H bonds by sulfoximidation in visible light is described. The mild reaction conditions allow the use of a broad array of substrates, including diarylmethane, alkyl arenes, arylacetonitrile, 2‐arylacetate, and alkynyl aryl methanes. The sulfoximidation process is highly chemoselective and leads to the corresponding sulfoximines in generally good yields. Mechanistic investigations suggested the intermediacy of sulfoximidoyl radicals.  相似文献   

9.
Hydrogen bonds of phenol–cyclohexanone and phenol–H2O2 in the studied Baeyer–Villiger (B–V) oxidation have been investigated by HF, B3LYP, and MP2 methods with various basis sets. The accurate single‐point energies were performed using CCSD(T)/6‐31+G(d,p) and CCSD(T)/aug‐cc‐pVDZ on the optimized geometries of MP2/6‐31+G(d,p). It has been confirmed that B3LYP/6‐31+G(d,p) could be used to study such hydrogen bonds. Energetic analysis of complexes was carried out using the Xantheas method with BSSE corrected by CP method. Orbital energy order (ε) illuminated that phenol with good hydrogen donor‐acceptor property can interact with cyclohexanone or H2O2 to form hydrogen bound complexes, and the binding energies (BE) range from ?4.38 to ?14.06 kcal mol?1. NBO analysis indicated that the redistribution of atomic charges in the complexes facilitated nucleophilic attack of H2O2 on cyclohexanone. The calculated results match remarkably well with the experimental phenomena. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

10.
Chemical shifts of H-bonded protons in tetrabutylammonium hydrogen maleate and 14-substituted picolinic acid N-oxides have been measured in a number of dry solvents, of different activity, in order to distinguish between symmetrical single minimum and asymmetrical hydrogen bonds. In tetrabutylammonium hydrogen maleate the resonance was observed at 20.70 ppm and its was independent of the nature of the solvent used. The chemical shift value of picolinic acid N-oxide varies with the solvent. These observations suggest that the hydrogen bond is symmetrical in tetrabutylammonium hydrogen maleate but that it is asymmetrical in picolinic acid N-oxide. The chemical shifts of substituted picolinic acid N-oxides were correlated with σp, σm and ΔpKa. The substituent and solvent effects are compared and the position of the intramolecular H-bonded protons in picolinic acid N-oxides are estimated and discussed.  相似文献   

11.
A zinc‐catalyzed combined C? X and C? H borylation of aryl halides using B2pin2 (pin=OCMe2CMe2O) to produce the corresponding 1,2‐diborylarenes under mild conditions was developed. Catalytic C? H bond activation occurs ortho to the halide groups if such a site is available or meta to the halide if the ortho position is already substituted. This method thus represents a novel use of a group XII catalyst for C? H borylation. This transformation does not proceed via a free aryne intermediate, but a radical process seems to be involved.  相似文献   

12.
The late-stage introduction of diverse heterocycles onto complex small molecules enables efficient access to new medicinally relevant compounds. An attractive approach to such a transformation would utilize the ubiquitous aliphatic C–H bonds of a complex substrate. Herein, we report a system that enables direct C–H heteroarylation using a stable, commercially available O-alkenylhydroxamate with heterocyclic sulfone partners. The C–H heteroarylation proceeds efficiently with a range of aliphatic substrates and common heterocycles, and is a rare example of heteroarylation of strong C–H bonds. Importantly, the present approach is amenable to late-stage functionalization as the substrate is the limiting reagent in all cases.

The late-stage introduction of diverse heterocycles onto complex small molecules enables efficient access to new medicinally relevant compounds.  相似文献   

13.
Dihydroberberine (systematic name: 9,10‐dimethoxy‐6,8‐dihydro‐5H‐1,3‐dioxolo[4,5‐g]isoquinolino[3,2‐a]isoquinoline), C20H19NO4, a reduced form of pharmacologically important berberine, crystallizes from ethanol without interstitial solvent. The molecule shows a dihedral angle of 27.94 (5)° between the two arene rings at the ends of the molecule, owing to the partial saturation of the inner quinolizine ring system. Although lacking classical O—H or N—H donors, the packing in the crystalline state is clearly governed by C—H...N and C—H...O hydrogen bonds involving the two acetal‐type C—H bonds of the 1,3‐dioxole ring. Each dihydroberberine molecule is engaged in four hydrogen bonds with neighbouring molecules, twice as donor and twice as acceptor, thus forming a two‐dimensional sheet network that lies parallel to the (100) plane.  相似文献   

14.
Direct transformation of carbon–hydrogen bond (C–H) has emerged to be a trend for construction of molecules from building blocks with no or less prefunctionalization, leading high atom and step economy. Directing group (DG) strategy is widely used to achieve higher reactivity and selectivity, but additional steps are usually needed for installation and/or cleavage of DGs, limiting step economy of the overall transformation. To meet this challenge, we proposed a concept of automatic DG (DGauto), which is auto‐installed and/or auto‐cleavable. Multifunctional oxime and hydrazone DGauto were designed for C–H activation and alkyne annulation to furnish diverse nitrogen‐containing heterocycles. Imidazole was employed as an intrinsic DG (DGin) to synthesize ring‐fused and π‐extended functional molecules. The alkyne group in the substrates can also be served as DGin for ortho‐C–H activation to afford carbocycles. In this account, we intend to give a review of our progress in this area and brief introduction of other related advances on C–H functionalization using DGauto or DGin strategies.  相似文献   

15.
朱晨  芮蕾  傅尧 《中国化学》2008,26(8):1493-1500
本文使用ONIOM-G3B3的方法计算了一系列高位阻烷烃的C-C和C-H键离解能。研究还测定了它们的几何参数,如键长,键角,分子体积等,它们中的绝大多数分子目前还没有被合成。这些几何参数表征了位阻效应对键离解能产生的影响。研究确定了键离解能的迅速减小和分子体积的增大之间的一些关系。这些关系可以帮助使用理论方法预测很多高位阻化合物的合成。  相似文献   

16.
The C–HN hydrogen bond in the methane–ammonia complex is studied by determining its bond dissociation energy (BDE) and the n(N)→σ*(C–H) interaction. At the MP2(Full)/6-311++G(3df,2p) level of theory with basis set superposition error (BSSE) correction, the BDE was determined to be 2.5 kJ mol−1. The n(N)→σ*(C–H) interaction at this level of theory was found to be 3.7 kJ mol−1 by natural bond orbital (NBO) analysis. It was also found that the NBO values are in general higher than the BDE values with BSSE correction when they are compared at the same level of theory.  相似文献   

17.
To investigate the proton/deuteron geometrical isotope effect of positively and negatively charged water complexes, H5O2+ and H3O2-, we have carried out accurate ab initio path integral simulations considering the electron correlation effect. It has been found that the isotope effect on the hydrogen bond is different between these two species in that the oxygen separation becomes shorter in H5O2+ while longer in H3O2- by deuteron substitution. This behavior is ascribed to the change in the quantum effect of hydrogen bonds whether the shared hydrogen is on a single or double well potential surface.  相似文献   

18.
The concentration and temperature dependence of the chemical shifts of aromatic and -protons of tetra-meso substituted porphyrin ions in aqueous solution have been investigated. A considerable increase in the localization temperatures of interior NH protons of porphyrins dissolved in water compared to solutions of porphyrins in organic solvents was observed. Types of association of the porphyrins studied and the possibility of intra- and intermolecular hydrogen bonds are discussed.State Science Center, Institute of Biophysics, Ministry of Public Health, Moscow 123182. Institute of Biological and Medicinal Chemistry, Russian Academy of Medical Science, Moscow 119832, Russia. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 535–541, April, 1998.  相似文献   

19.
The title compound, C25H22O3P2·C6H6O, has a zwitterionic betaine‐like structure and crystallizes as a phenol solvate. The two molecular components are held together by an almost linear intermolecular O—H...O hydrogen bond. The structure also contains three weak C—H...O and two C—H...π(arene) interactions.  相似文献   

20.
We propose a simple analytical model to account for water's hydrogen bonds in the hydrophobic effect. It is based on computing a mean-field partition function for a water molecule in the first solvation shell around a solute molecule. The model treats the orientational restrictions from hydrogen bonding, and utilizes quantities that can be obtained from bulk water simulations. We illustrate the principles in a 2-dimensional Mercedes-Benz-like model. Our model gives good predictions for the heat capacity of hydrophobic solvation, reproduces the solvation energies and entropies at different temperatures with only one fitting parameter, and accounts for the solute size dependence of the hydrophobic effect. Our model supports the view that water's hydrogen bonding propensity determines the temperature dependence of the hydrophobic effect. It explains the puzzling experimental observation that dissolving a nonpolar solute in hot water has positive entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号