首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectroscopy at 298 and 77K has been used to study the secondary uranyl mineral johannite of formula (Cu(UO2)2(SO4)2(OH)2 x 8H2O). Four Raman bands are observed at 3593, 3523, 3387 and 3234cm(-1) and four infrared bands at 3589, 3518, 3389 and 3205cm(-1). The first two bands are assigned to OH- units (hydroxyls) and the second two bands to water units. Estimations of the hydrogen bond distances for these four bands are 3.35, 2.92, 2.79 and 2.70 A. A sharp intense band at 1042 cm(-1) is attributed to the (SO4)2- symmetric stretching vibration and the three Raman bands at 1147, 1100 and 1090cm(-1) to the (SO4)2- anti-symmetric stretching vibrations. The nu2 bending modes were at 469, 425 and 388 cm(-1) at 77K confirming the reduction in symmetry of the (SO4)2- units. At 77K two bands at 811 and 786 cm(-1) are attributed to the nu1 symmetric stretching modes of the (UO2)2+ units suggesting the non-equivalence of the UO bonds in the (UO2)2+ units. The band at 786cm(-1), however, may be related to water molecules libration modes. In the 77K Raman spectrum, bands are observed at 306, 282, 231 and 210cm(-1) with other low intensity bands found at 191, 170 and 149cm(-1). The two bands at 282 and 210 cm(-1) are attributed to the doubly degenerate nu2 bending vibration of the (UO2)2+ units. Raman spectroscopy can contribute significant knowledge in the study of uranyl minerals because of better band separation with significantly narrower bands, avoiding the complex spectral profiles as observed with infrared spectroscopy.  相似文献   

2.
Raman spectroscopy at 298 and 77K has been used to study the mineral kamotoite-(Y), a uranyl rare earth carbonate mineral of formula Y(2)(UO(2))(4)(CO(3))(3)(OH)(8).10-11H(2)O. The mineral is characterised by two Raman bands at 1130.9 and 1124.6 cm(-1) assigned to the nu(1) symmetric stretching mode of the (CO(3))(2-) units, while those at 1170.4 and 862.3 cm(-1) (77K) to the deltaU-OH bending vibrations. The assignment of the two bands at 814.7 and 809.6 cm(-1) is difficult because of the potential overlap between the symmetric stretching modes of the (UO(2))(2+) units and the nu(2) bending modes of the (CO(3))(2-) units. Only a single band is observed in the 77K spectrum at 811.6 cm(-1). One possible assignment is that the band at 814.7 cm(-1) is attributable to the nu(1) symmetric stretching mode of the (UO(2))(2+) units and the second band at 809.6 cm(-1) is due to the nu(2) bending modes of the (CO(3))(2-) units. Bands observed at 584 and 547.3 cm(-1) are attributed to water librational modes. An intense band at 417.7 cm(-1) resolved into two components at 422.0 and 416.6 cm(-1) in the 77K spectrum is assigned to an Y(2)O(2) stretching vibration. Bands at 336.3, 286.4 and 231.6 cm(-1) are assigned to the nu(2) (UO(2))(2+) bending modes. U-O bond lengths in uranyl are calculated from the wavenumbers of the uranyl symmetric stretching vibrations. The presence of symmetrically distinct uranyl and carbonate units in the crystal structure of kamotoite-(Y) is assumed. Hydrogen-bonding network related to the presence of water molecules and hydroxyls is shortly discussed.  相似文献   

3.
Uranyl micas are based upon (UO(2)PO(4))(-) units in layered structures with hydrated counter cations between the interlayers. Uranyl micas also known as the autunite minerals are of general formula M(UO2)2(XO4)2 x 8-12H2O where M may be Ba, Ca, Cu, Fe(2+), Mg, Mn(2+) or 1/2(HA1) and X is As or P. The structures of these minerals have been studied using Raman microscopy at 298 and 77K. Six hydroxyl stretching bands are observed of which three are highly polarised. The hydroxyl stretching vibrations are related to the strength of hydrogen bonding of the water OH units. Bands in the Raman spectrum of autunite at 998, 842 and 820 cm(-1) are highly polarised. Low intensity band at 915 cm(-1) is attributed to the nu(3) antisymmetric stretching vibration of (UO(2))(2+) units. The band at 820 cm(-1) is attributed to the nu(1) symmetric stretching mode of the (UO(2))(2+) units. The (UO(2))(2+) bending modes are found at 295 and 222 m(-1). The presence of phosphate and arsenate anions and their isomorphic substitution are readily determined by Raman spectroscopy. The collection of Raman spectra at 77K enables excellent band separation.  相似文献   

4.
The mineral allactite [Mn(7)(AsO(4))(2)(OH)(8)] is a basic manganese arsenate which is highly pleochroic. The use of the 633 nm excitation line enables quality spectra of to be obtained irrespective of the crystal orientation. The mineral is characterised by a set of sharp bands in the 770-885 cm(-1) region. Intense and sharp Raman bands are observed at 883, 858, 834, 827, 808 and 779 cm(-1). Collecting the spectral data at 77K enabled better band separation with narrower bandwidths. The observation of multiple AsO(4) stretching bands indicates the non-equivalence of the arsenate anions in the allactite structure. In comparison the infrared spectrum shows a broad spectral profile with a series of difficult to define overlapping bands. The low wavenumber region sets of bands which are assigned to the nu(2) modes (361 and 359 cm(-1)), the nu(4) modes (471, 452 and 422 cm(-1)), AsO stretching vibrations at 331 and 324 cm(-1), and bands at 289 and 271 cm(-1) which may be ascribed to MnO stretching modes. The observation of multiple bands shows the loss of symmetry of the AsO(4) units and the non-equivalence of these units in the allactite structure. The study shows that highly pleochroic minerals can be studied by Raman spectroscopy.  相似文献   

5.
Raman spectroscopy complimented with infrared ATR spectroscopy has been used to characterise a halotrichite FeSO(4) x Al(2)(SO(4))(3) x 22 H(2)O from The Jaroso Ravine, Aquilas, Spain. Halotrichites form a continuous solid solution series with pickingerite and chemical analysis shows that the jarosite contains 6% Mg(2+). Halotrichite is characterised by four infrared bands at 3569.5, 3485.7, 3371.4 and 3239.0 cm(-1). Using Libowitsky type relationships, hydrogen bond distances of 3.08, 2.876, 2.780 and 2.718 Angstrom were determined. Two intense Raman bands are observed at 987.7 and 984.4 cm(-1) and are assigned to the nu(1) symmetric stretching vibrations of the sulphate bonded to the Fe(2+) and the water units in the structure. Three sulphate bands are observed at 77K at 1000.0, 991.3 and 985.0 cm(-1) suggesting further differentiation of the sulphate units. Raman spectrum of the nu(2) and nu(4) region of halotrichite at 298 K shows two bands at 445.1 and 466.9 cm(-1), and 624.2 and 605.5 cm(-1), respectively, confirming the reduction of symmetry of the sulphate in halotrichite.  相似文献   

6.
Raman spectroscopy at 298 and 77 K of bergenite has been used to characterise this uranyl phosphate mineral. Bands at 995, 971 and 961 cm-1 (298 K) and 1006, 996, 971, 960 and 948 cm-1 (77K) are assigned to the nu1(PO4)3- symmetric stretching vibration. Three bands at 1059, 1107 and 1152 cm-1 (298 K) and 1061, 1114 and 1164 cm-1 (77 K) are attributed to the nu3(PO4)3- antisymmetric stretching vibrations. Two bands at 810 and 798 cm-1 (298 K) and 812 and 800 cm-1 (77 K) are attributed to the nu1 symmetric stretching vibration of the (UO2)2+ units. Bands at 860 cm-1 (298 K) and 866 cm-1 (77 K) are assigned to the nu3 antisymmetric stretching vibrations of the (UO2)2+ units. UO bond lengths in uranyls, calculated using the wavenumbers of the nu1 and nu3(UO2)2+ vibrations with empirical relations by Bartlett and Cooney, are in agreement with the X-ray single crystal structure data. Bands at (444, 432, 408 cm-1) (298 K), and (446, 434, 410 and 393 cm-1) (77 K) are assigned to the split doubly degenerate nu2(PO4)3- in-plane bending vibrations. The band at 547 cm-1 (298 K) and 549 cm-1 (77 K) are attributed to the nu4(PO4)3- out-of-plane bending vibrations. Raman bands at 3607, 3459, 3295 and 2944 cm-1 are attributed to water stretching vibrations and enable the calculation of hydrogen bond distances of >3.2, 2.847, 2.740 and 2.637 A. These bands prove the presence of structurally nonequivalent hydrogen bonded water molecules in the structure of bergenite.  相似文献   

7.
Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K   总被引:6,自引:0,他引:6  
The Raman spectra of urea and urea-intercalated kaolinites have been recorded at 77 K using a Renishaw Raman microprobe equipped with liquid nitrogen cooled microscope stage. The NH2 stretching modes of urea were observed as four bands at 3250, 3321, 3355 and 3425 cm(-1) at 77 K. These four bands are attributed to a change in conformation upon cooling to liquid nitrogen temperature. Upon intercalation of urea into both low and high defect kaolinites, only two bands were observed near 3390 and 3410 cm(-1). This is explained by hydrogen bonding between the amine groups of urea and oxygen atoms of the siloxane layer of kaolinite with only one urea conformation. When the intercalated low defect kaolinite was cooled to 77 K, the bands near 3700 cm(-1) attributed to the stretching modes of the inner surface hydroxyls disappeared and a new band was observed at 3615 cm(-1). This is explained by the breaking of hydrogen bonds involving OH groups of the gibbsite-like layer and formation of new bonds to the C=O group of the intercalated urea. Thus it is suggested that at low temperatures two kinds of hydrogen bonds are formed by urea molecules in urea-intercalated kaolinite.  相似文献   

8.
The mineral giniite has been synthesised and characterised by XRD, SEM and Raman and infrared spectroscopy. SEM images of the olive-green giniite display a very unusual image of pseudo-spheres with roughened surfaces of around 1-10microm in size. The face to face contact of the spheres suggests that the spheres are colloidal and carry a surface charge. Raman spectroscopy proves the (PO4)3- units are reduced in symmetry and in all probability more than one type of phosphate unit is found in the structure. Raman bands at 77K are observed at 3380 and 3186cm-1 with an additional sharp band at 3100cm-1. The first two bands are assigned to water stretching vibrations and the latter to an OH stretching band. Intense Raman bands observed at 396, 346 and 234cm-1are attributed to the FeO stretching vibrations. The giniite phosphate units are characterised by two Raman bands at 1023 and 948cm-1 assigned to symmetric stretching mode of the (PO4)3- units. A complex band is observed at 460.5cm-1 with additional components at 486.8 and 445.7cm-1 attributed to the nu(2) bending modes suggesting a reduction of symmetry of the (PO4)3- units.  相似文献   

9.
The Raman spectrum of atelestite Bi2O(OH)(AsO4), a hydroxy-arsenate mineral containing bismuth, has been studied in terms of spectra-structure relations. The studied spectrum is compared with the Raman spectrum of atelestite downloaded from the RRUFF database. The sharp intense band at 834 cm(-1) is assigned to the ν1 AsO4(3-) (A1) symmetric stretching mode and the three bands at 767, 782 and 802 cm(-1) to the ν3 AsO4(3-) antisymmetric stretching modes. The bands at 310, 324, 353, 370, 395, 450, 480 and 623 cm(-1) are assigned to the corresponding ν4 and ν2 bending modes and BiOBi (vibration of bridging oxygen) and BiO (vibration of non-bridging oxygen) stretching vibrations. Lattice modes are observed at 172, 199 and 218 cm(-1). A broad low intensity band at 3095 cm(-1) is attributed to the hydrogen bonded OH units in the atelestite structure. A weak band at 1082 cm(-1) is assigned to δ(BiOH) vibration.  相似文献   

10.
A comprehensive Raman spectroscopic study of the acetates of potassium, sodium and magnesium in the solid state have been made at both 298 and 77 K. Band separation of the C=O stretching region was not achieved in the 298 K spectra but was in the 77 K spectra. The CO stretching vibration is observed as a single band in both the 298 and 77 K spectra and its frequency is cation dependent. Single C–C stretching bands are observed for the acetates in the 77 K spectra. The OCO deformation vibrations were also cation dependent. Low frequency vibrations of magnesium acetate are observed at 338, 253 and 268 cm−1 and are assigned to the MgO stretching vibration of the magnesium bisacetato complex. Low frequency bands were also observed for sodium acetate at 219, 277 and 288 cm−1.  相似文献   

11.
The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12,000-7600 cm(-1) spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm(-1). A broad spectral feature observed for ferrous ion in the 12,000-9000 cm(-1) region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm(-1) indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm(-1) region resulting from the combinations of vibrational modes of (PO(4))(3-) units.  相似文献   

12.
The mineral nesquehonite Mg(OH)(HCO(3))·2H(2)O has been analysed by a combination of infrared (IR) and infrared emission spectroscopy (IES). Both techniques show OH vibrations, both stretching and deformation modes. IES proves the OH units are stable up to 450°C. The strong IR band at 934 cm(-1) is evidence for MgOH deformation modes supporting the concept of HCO(3)(-) units in the molecular structure. Infrared bands at 1027, 1052 and 1098 cm(-1) are attributed to the symmetric stretching modes of HCO(3)(-) and CO(3)(2-) units. Infrared bands at 1419, 1439, 1511, and 1528 cm(-1) are assigned to the antisymmetric stretching modes of CO(3)(2-) and HCO(3)(-) units. IES supported by thermoanalytical results defines the thermal stability of nesquehonite. IES defines the changes in the molecular structure of nesquehonite with temperature. The results of IR and IES supports the concept that the formula of nesquehonite is better defined as Mg(OH)(HCO(3))·2H(2)O.  相似文献   

13.
Newberyite Mg(PO3OH)·3H2O is a mineral found in caves such as from Moorba Cave, Jurien Bay, Western Australia, the Skipton Lava Tubes (SW of Ballarat, Victoria, Australia) and in the Petrogale Cave (Madura, Eucla, Western Australia). Because these minerals contain oxyanions, hydroxyl units and water, the minerals lend themselves to spectroscopic analysis. Raman spectroscopy can investigate the complex paragenetic relationships existing between a number of 'cave' minerals. The intense sharp band at 982 cm(-1) is assigned to the PO4(3-)ν1 symmetric stretching mode. Low intensity Raman bands at 1152, 1263 and 1277 cm(-1) are assigned to the PO4(3-)ν3 antisymmetric stretching vibrations. Raman bands at 497 and 552 cm(-1) are attributed to the PO4(3-)ν4 bending modes. An intense Raman band for newberyite at 398 cm(-1) with a shoulder band at 413 cm(-1) is assigned to the PO4(3-)ν2 bending modes. The values for the OH stretching vibrations provide hydrogen bond distances of 2.728 ? (3267 cm(-1)), 2.781 ? (3374 cm(-1)), 2.868 ? (3479 cm(-1)), and 2.918 ? (3515 cm(-1)). Such hydrogen bond distances are typical of secondary minerals. Estimates of the hydrogen-bond distances have been made from the position of the OH stretching vibrations and show a wide range in both strong and weak bonds.  相似文献   

14.
ThermoRaman spectroscopy has been used to study the molecular structure and thermal decomposition of kintoreite, a phosphated jarosite PbFe3(PO4)2(OH,H2O)6. Infrared spectroscopy shows the presence of significant amounts of water in the structure as well as hydroxyl units. In contrast, no water was observed for segnitite (the arsenojarosite) as determined by infrared spectroscopy. The Raman spectra at 77 K exhibit bands at 974.6, 1003.2 and 866.5 cm(-1). These bands are attributed to the symmetric stretching vibrations of (PO4)3-, (SO4)3- and (AsO4)3- units. Raman spectroscopy confirms the presence of both arsenate and phosphate in the structure. Bands at 583.7 and 558.1 cm(-1) in the 77 K spectrum are assigned to the nu4 (PO4)3- bending modes. ThermoRaman spectroscopy of kintoreite identifies the temperature range of dehydration and dehydroxylation.  相似文献   

15.
Raman microscopy has been used to study the molecular structure of a synthetic goudeyite (YCu(6)(AsO(4))(3)(OH)(6) x 3H(2)O). These types of minerals have a porous framework similar to that of zeolites with a structure based upon (A(3+))(1-x)(A(2+))(x)Cu(6)(OH)(6)(AsO(4))(3-x)(AsO(3)OH)(x). Two sets of AsO stretching vibrations were found and assigned to the vibrational modes of AsO(4) and HAsO(4) units. Two Raman bands are observed in the region 885-915 and 867-870 cm(-1) region and are assigned to the AsO stretching vibrations of (HAsO(4))(2-) and (H(2)AsO(4))(-) units. The position of the bands indicates a C(2v) symmetry of the (H(2)AsO(4))(-) anion. Two bands are found at around 800 and 835 cm(-1) and are assigned to the stretching vibrations of uncomplexed (AsO(4))(3-) units. Bands are observed at around 435, 403 and 395 cm(-1) and are assigned to the nu(2) bending modes of the HAsO(4) (434 and 400 cm(-1)) and the AsO(4) groups (324 cm(-1)).  相似文献   

16.
Raman microscopy has been used to study low and high defect kaolinites and their potassium acetate intercalated complexes at 298 and 77 K. Raman spectroscopy shows significant differences in the spectra of the hydroxyl-stretching region of the two types of kaolinites, which is also reflected in the spectroscopy of the hydroxyl-stretching region of the intercalation complexes. Additional bands to the normally observed kaolinite hydroxyl stretching frequencies are observed for the low and high defect kaolinites at 3605 and 3602 cm(-1) at 298 K. Upon cooling to liquid nitrogen temperature, these bands are observed at 3607 and 3604 cm(-1), thus indicating a weakening of the hydrogen bond formed between the inner surface hydroxyls and the acetate ion. Upon cooling to liquid nitrogen temperature, the frequency of the inner hydroxyls shifted to lower frequencies. Collection of Raman spectra at liquid nitrogen temperature did not give better band separation compared to the room temperature spectra as the bands increased in width and shifted closer together.  相似文献   

17.
Raman spectra of threadgoldite at 298 and 77K are measured and interpreted for the first time. Bands related the (UO(2))(2+) and (PO(4))(3-) stretching and bending vibrations are tenatively attributed together with the bands assigned to the stretching a and bending vibrations of water molecules and hydroxyls. Hydrogen-bonding network and H(2)O and (OH)(-1) libration modes are mentioned. U-O bond lengths in uranyls are calculated via empirical relations R(U-O)=f[nu(1) and nu(3)(UO(2))(2+)]A. They are comparable to the values inferred from the single crystal structure analysis of threadgoldite.  相似文献   

18.
Raman spectroscopy has been used to identify whether or not a selection of minerals labelled as mixites (formula BiCu6(AsO4)3(OH)6.3H2O) are correctly marked. Of the four samples, two samples are shown to be potentially mixites because of the presence of the characteristic Raman spectra of (AsO4)3- units and (HAsO4)- units, characterised by bands at around 803 and 833 cm(-1). Two of the minerals are shown to be predominantly carbonates. Bands are observed at 3473.9 and 3470.3 cm(-1) for the two mixite samples. Bands observed in the region 880-910 cm(-1) and in the 867-870 cm(-1) region are assigned to the AsO stretching vibrations of (HAsO4)2- and (H2AsO4)- units. Whilst bands at around 803 and 833 cm(-1) are assigned to the stretching vibrations of uncomplexed (AsO4)3- units. Intense bands observed at 473.7 and 475.4 cm(-1) are assigned to the nu4 bending mode of AsO4 units. Bands observed at around 386.5, 395.3 and 423.1 cm(-1) are assigned to the nu2 bending modes of the HAsO4 (434 and 400 cm(-1)) and the AsO4 groups (324 cm(-1)). Raman spectroscopy lends itself to the identification of minerals on host matrices and is especially useful for the identification of mixites.  相似文献   

19.
Dichlorvos [2,2-dichlorovinyl dimethyl phosphate, (CH(3)O)(2)P(O)OCH═CCl(2)] is a relatively volatile in-use insecticide. Rate constants for its reaction with OH radicals have been measured over the temperature range 296-348 K and atmospheric pressure of air using a relative rate method. The rate expression obtained was 3.53 × 10(-13) e((1367±239)/T) cm(3) molecule(-1) s(-1), with a 298 K rate constant of (3.5 ± 0.7) × 10(-11) cm(3) molecule(-1) s(-1), where the error in the 298 K rate constant is the estimated overall uncertainty. In addition, rate constants for the reactions of NO(3) radicals and O(3) with dichlorvos, of (2.5 ± 0.5) × 10(-13) cm(3) molecule(-1) s(-1) and (1.7 ± 1.0) × 10(-19) cm(3) molecule(-1) s(-1), respectively, were measured at 296 ± 2 K. Products of the OH and NO(3) radical-initiated reactions were investigated using in situ atmospheric pressure ionization mass spectrometry (API-MS) and (OH radical reaction only) in situ Fourier transform infrared (FT-IR) spectroscopy. For the OH radical reaction, the major initial products were CO, phosgene [C(O)Cl(2)] and dimethyl phosphate [(CH(3)O)(2)P(O)OH], with equal (to within ±10%) formation yields of CO and C(O)Cl(2). The API-MS analyses were consistent with formation of (CH(3)O)(2)P(O)OH from both the OH and NO(3) radical-initiated reactions. In the atmosphere, the dominant chemical loss processes for dichlorvos will be daytime reaction with OH radicals and nighttime reaction with NO(3) radicals, with an estimated lifetime of a few hours.  相似文献   

20.
Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V10O28)6-. Decavanadate consists of four distinct VO6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm(-1). Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm(-1) and originate from four distinct VO6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V5O14)3- units. Barnesite is characterised by a single Raman band at 1010 cm(-1), whilst hummerite has Raman bands at 999 and 962 cm(-1). The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO6 sites. Metarossite is characterised by a strong band at 953 cm(-1). These bands are assigned to nu1 symmetric stretching modes of (V6O16)2- units and terminal VO3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm(-1) and in the 803-833 cm(-1) region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to nu3 antisymmetric stretching of (V10O28)6- units or (V5O14)3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm(-1) region and are assigned to the nu2 bending modes of (V10O28)6- units or (V5O14)3- units. Raman bands are observed in the 530-620 cm(-1) region and are assigned to the nu4 bending modes of (V10O28)6- units or (V5O14)3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are probably due to VO subunits and MO bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号