共查询到20条相似文献,搜索用时 15 毫秒
1.
Videla M Jacinto JS Baggio R Garland MT Singh P Kaim W Slep LD Olabe JA 《Inorganic chemistry》2006,45(21):8608-8617
2.
We have synthesized the complex [Ru(bpy)(2)(bpy(OH)(2))](2+) (bpy =2,2'-bipyridine, bpy(OH)(2) = 4,4'-dihydroxy-2,2'-bipyridine). Experimental results coupled with computational studies were utilized to investigate the structural and electronic properties of the complex, with particular attention paid toward the effects of deprotonation on these properties. The most distinguishing feature observed in the X-ray structural data is a shortening of the CO bond lengths in the modified ligand upon deprotonation. Similar results are also observed in the computational studies as the CO bond becomes double bond in character after deprotonating the complex. Electrochemically, the hydroxy-modified bipyridyl ligand plays a significant role in the redox properties of the complex. When protonated, the bpy(OH)(2) ligand undergoes irreversible reduction processes; however, when deprotonated, reduction of the substituted ligand is no longer observed, and several new irreversible oxidation processes associated with the modified ligand arise. pH studies indicate [Ru(bpy)(2)(bpy(OH)(2))](2+) has two distinct deprotonations at pK(a1) = 2.7 and pK(a2) = 5.8. The protonated [Ru(bpy)(2)(bpy(OH)(2))](2+) complex has a characteristic UV/Visible absorption spectrum similar to the well-studied complex [Ru(bpy)(3)](2+) with bands arising from Metal-to-Ligand Charge Transfer (MLCT) transitions. When the complex is deprotonated, the absorption spectrum is altered significantly and becomes heavily solvent dependent. Computational methods indicate that the deprotonated bpy(O(-))(2) ligand mixes heavily with the metal d orbitals leading to a new absorption manifold. The transitions in the complex have been assigned as mixed Metal-Ligand to Ligand Charge Transfer (MLLCT). 相似文献
3.
Xia H Zhu Y Lu D Li M Zhang C Yang B Ma Y 《The journal of physical chemistry. B》2006,110(37):18718-18723
The mixed-ligand polypyridine ruthenium(II) complexes, [Ru(bpy)(2)(dmeb)](2+)(PF(6)(-))(2) (Ru(dmeb)(2+)) and [Ru(bpy)(2)(dbeb)](2+)(PF(6)(-))(2) (Ru(dbeb)(2+)), where bpy is bipyridine, dmeb is 4,4'-dimethyl ester-2,2'-bipyridine, and dbeb is 4,4'-dibutyl ester-2,2'-bipyridine, are synthesized and characterized, and their spectroscopic, electrochemical, and electroluminescent properties are reported. Both Ru(II) complexes showed strong emission from the triplet metal-to-ligand charge-transfer excited state, red-shifted emission spectra (lambda(max) = 642 nm), and good solubility in organic solvents compared to the frequently used tris(bipyridine) Ru(II) complexes. The electrochemical measurements for these Ru complexes showed reversible and quasi-reversible redox processes, implying a potential improvement in the stability of the electroluminescent device. The electrophosphorescent devices were fabricated by doping them in a polymer host using a simple solution spin-coating technique. For a single-layer device with the 1.0 wt % Ru(dbeb)(2+)-doped polymer blends of poly(vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol (PBD) as the emitting layer and with the metal Ba as the cathode, an external quantum efficiency of 3.0%, a luminous efficiency of 2.4 cd/A, and a maximum brightness of 935 cd/m(2) are reached with an electroluminescence (EL) spectral peak at 640 nm and Commission Internationale de L'Eclairage chromaticity coordinates of x = 0.64 and y = 0.33, which were comparable with standard red color. 相似文献
4.
Acid-base properties for ruthenium(II) bis(2,2'-bipyridine) 3-carboxyl-2,2'-bipyridine reveal a ground state pK(a) of 0.82 +/- 0.07 and an excited state pK(a) of 2.31 +/- 0.05, a 1.5 pH unit increase from the ground state. The excited state pK(a) is temperature independent while the ground state pK(a)(0) increases with temperature and has DeltaH(0) and DeltaS(0) values of -990 +/- 149 cm(-)(1) and -4.57 +/- 0.48 cm(-)(1) K(-)(1), respectively. The acidic form of the complex emits at lower energy than the basic form at both 296 and 77 K. The emission energy maxima are solvent dependent and decrease in energy when the solvent changes from 4:1 (v/v) 2-MeTHF-CH(2)Cl(2) to water and when the pH decreases. Changes in excited state lifetimes with emission energy follow the energy gap law with an intercept of 49 +/- 1 and a slope of (2.11 +/- 0.09) x 10(-)(3). Emission quantum yields for protonated and deprotonated species in 4:1 (v/v) 2-MeTHF-CH(2)Cl(2) are 0.023 +/- 0.001 and 0.110 +/- 0.002, respectively. The temperature dependence of the emission lifetimes gives energy barriers of 270 cm(-)(1) for the complex in aqueous solution at pH -0.5, and 990 cm(-)(1) in aqueous solution at pH 4.5, and 1920 cm(-)(1) in 4:1 (v/v) 2-MeTHF-CH(2)Cl(2.) 相似文献
5.
The crystal structures of the first U(III) complex of a crown thioether and of its La(III) analog have been determined; a stronger M-S interaction is observed for U(III) with respect to La(III) and Ce(III) in solution and in the solid state. 相似文献
6.
Hotze AC van der Geer EP Caspers SE Kooijman H Spek AL Haasnoot JG Reedijk J 《Inorganic chemistry》2004,43(16):4935-4943
The striking difference in cytotoxic activity between the inactive cis-[Ru(bpy)(2)Cl(2)] and the recently reported highly cytotoxic alpha-[Ru(azpy)(2)Cl(2)] (alpha indicating the isomer in which the coordinating Cl atoms, pyridine nitrogens, and azo nitrogens are in mutual cis, trans, cis orientation) encouraged the synthesis of the mixed-ligand compound cis-[Ru(azpy)(bpy)Cl(2)]. The synthesis and characterization of the only occurring isomer, i.e., alpha-[Ru(azpy)(bpy)Cl(2)], 1 (alpha denoting the isomer in which the Cl ligands are cis related to each other and the pyridine ring of azpy is trans to the pyridine ring of bpy), are described. The solid-state structure of 1 has been determined by X-ray structure analysis. The IC(50) values obtained for several human tumor cell lines have indicated that compound 1 shows mostly a low to moderate cytotoxicity. The binding of the DNA model base 9-ethylguanine (9-EtGua) to the hydrolyzed species of 1 has been studied and compared to DNA model base binding studies of cis-[Ru(bpy)(2)Cl(2)] and alpha-[Ru(azpy)(2)Cl(2)]. The completely hydrolyzed species of 1, i.e., alpha-[Ru(azpy)(bpy)(H(2)O)(2)](2+), has been reacted with 9-EtGua in water at room temperature for 24 h. This resulted in the monofunctional binding of only one 9-EtGua, coordinated via the N7 atom. The product has been isolated as alpha-[Ru(azpy)(bpy)(9-EtGua)(H(2)O)](PF(6))(2), 2, and characterized by 2D NOESY NMR spectroscopy. The NOE data show that the 9-EtGua coordinates (under these conditions) at the position trans to the azo nitrogen atom. Surprisingly, time-dependent (1)H NMR data of the 9-EtGua adduct 2 in acetone-d(6) show an unprecedented positional shift of the 9-EtGua from the position trans to the azo nitrogen to the position trans to the bpy nitrogen atom, resulting in the adduct alpha'-[Ru(azpy)(bpy)(9-EtGua)(H(2)O)](PF(6))(2) (alpha' indicating 9-EtGua is trans to the bpy nitrogen). This positional isomerization of 9-EtGua is correlated to the cytotoxicity of 1 in comparison to both the cytotoxicity and 9-EtGua coordination of cis-[Ru(bpy)(2)Cl(2)], alpha-[Ru(azpy)(2)Cl(2)], and beta-[Ru(azpy)(2)Cl(2)]. This positional isomerization process is unprecedented in model base metal chemistry and could be of considerable biological significance. 相似文献
7.
Sala X Romero I Rodríguez M Llobet A González G Martínez M Benet-Buchholz J 《Inorganic chemistry》2004,43(17):5403-5409
Two new Ru complexes containing the 1,10-phenanthroline (phen) and 1,4,7-trithiacyclononane ([9]aneS3, SCH2CH2SCH2CH2SCH2CH2) ligands of general formula [Ru(phen)(L)([9]aneS3)]2+ (L = MeCN, 3; L = pyridine (py), 4) have been prepared and thoroughly characterized. Structural characterization in the solid state has been performed by means of X-ray diffraction analyses, which show a distorted octahedral environment for a diamagnetic d6 Ru(II), as expected. 1H NMR spectroscopy provides evidence that the same structural arrangement is maintained in solution. Further spectroscopic characterization has been carried out by UV-vis spectroscopy where the higher acceptor capability of MeCN versus the py ligand is manifested in a 9-15-nm blue shift in its MLCT bands. The E1/2 redox potential of the Ru(III)/Ru(II) couple for 3 is anodically shifted with respect to its Ru-py analogue, 4, by 60 mV, which is also in agreement with a higher electron-withdrawing capacity of the former. The mechanism for the reaction Ru-py + MeCN--> Ru-MeCN + py has also been investigated at different temperatures with and without irradiation. In the absence of irradiation at 326 K, the thermal process gives kinetic constants of k2 = 1.4 x 10(-5) s(-1) (DeltaH(++) = 108 +/- 3 kJ mol(-1), DeltaS(++) = -8 +/- 9 J K(-1) mol(-1)) and k-2 = 2.9 x 10(-6) s(-1) (DeltaH(++) = 121 +/- 1 kJ mol(-1), DeltaS(++) = 18 +/- 3 J K(-1) mol(-1)). The phototriggered process is faster and consists of preequilibrium formation of an intermediate that thermally decays to the final Ru-MeCN complex with an apparent rate constant of (k1Khnu)app = 1.8 x 10(-4) s(-1) at 304 K, under the continuous irradiation experimental conditions used. 相似文献
8.
9.
Santana-Marques MG Amado FM Correia AJ Lucena M Madureira J Goodfellow BJ Félix V Santos TM 《Journal of mass spectrometry : JMS》2001,36(5):529-537
Electrospray ionization mass spectrometry (ESIMS) was used to characterize a series of new ruthenium(II) complexes with several nitrogen heterocycles and a common ligand: the crown thioether 1,4,7-trithiacyclononane, [9]aneS(3). ESIMS allows the easy identification of the [Ru(II)Cl([9]aneS(3))Y]X complexes, where Y is a bidentate nitrogen heterocycle and X is Cl(-) or PF(6)(-), through the formation of two diagnostic ions by fragmentation of the common ligand [9]aneS(3). Structures for these ions and mechanisms for their gas-phase formation are proposed based on data from product ion spectra. 相似文献
10.
Nag S Ferreira JG Chenneberg L Ducharme PD Hanan GS La Ganga G Serroni S Campagna S 《Inorganic chemistry》2011,50(1):7-9
Two new bidentate ligands (1 and 2) with bicyclic guanidine moieties were synthesized and attached to a Ru(II)(bpy)(2) core (bpy = 2,2'-bipyridine) to afford complexes 3 and 4, which were characterized by spectroscopic and electrochemical methods. Complex 4 was further characterized by X-ray crystallography. In cyclic voltammetric studies, both complexes show a Ru(II/III) couple, which is 500 mV less positive than the Ru(II/III) couple of Ru(bpy)(3)(2+). The (1)MLCT and (3)MLCT states of 3 (560 nm/745 nm) and 4 (550 nm/740 nm) are significantly red-shifted with respect to Ru(bpy)(3)(2+) (440 nm/620 nm). Compounds 3 and 4 exhibit emission from a Ru(II)-to-bpy (3)MLCT state, which is rarely the emitting state at λ > 700 nm in [Ru(bpy)(2)(N-N)](2+) complexes. 相似文献
11.
A density functional theoretical (DFT) study (B3LYP) has been carried out on 20 organometallic complexes containing η(5)- and/or η(3)-coordinated cyclopentadienyl anions (Cp(-)) and 2,2'-bipyridine (bpy) ligand(s) at varying oxidation levels, i.e., as the neutral ligand (bpy(0)), as the π-radical monoanion (bpy(?-))(-), or as the diamagnetic dianion (bpy(2-))(2-). The molecular and electronic structures of these species in their ground states and, in some cases, their first excited states have been calculated using broken-symmetry methodology. The results are compared with experimental structural and spectroscopic data (where available) in order to validate the DFT computational approach. The following electron-transfer series and complexes have been studied: [(Cp)(2)V(bpy)](0,+,2+) (1-3), [(Cp)(2)Ti(bpy)](-,0,+,2+) (4-7), [(Cp)(2)Ti(biquinoline)](0,+) (8 and 9), [(Cp*)(2)Ti(bpy)](0) (10) (Cp* = pentamethylcyclopentadienyl anion), [Cp*Co(bpy)](0,+) (11 and 12), [Cp*Co(bpy)Cl](+,0) (13 and 14), [Fe(toluene)(bpy)](0) (15), [Cp*Ru(bpy)](-) (16), [(Cp)(2)Zr(bpy)](0) (17), and [Mn(CO)(3)(bpy)](-) (18). In order to test the predictive power of our computations, we have also calculated the molecular and electronic structures of two complexes, A and B, namely, the diamagnetic dimer [Cp*Sc(bpy)(μ-Cl)](2) (A) and the paramagnetic (at 25 °C) mononuclear species [(η(5)-C(5)H(4)(CH(2))(2)N(CH(3))(2))Sc((m)bpy)(2)] (B). The crystallographically observed intramolecular π-π interaction of two N,N'-coordinated π-radical anions in A leading to an S = 0 ground state is reliably reproduced. Similarly, the small singlet-triplet gap of ~600 cm(-1) between two antiferromagnetically coupled (bpy(?-))(-) ligands in B, two ferromagnetically coupled radical anions in the triplet excited state of B, and the structures of A and B is reproduced. Therefore, we are confident that we can present computationally obtained, detailed electronic structures for complexes 1-18. We show that N,N'-coordinated neutral bpy(0) ligands behave as very weak π acceptors (if at all), whereas the (bpy(2-))(2-) dianions are strong π-donor ligands. 相似文献
12.
《Chemical physics letters》1987,134(6):617-621
Phosphorescence and optically detected magnetic resonance (ODMR) spectra in zero field, as well as their kinetics, were measured for 2,2'-bipyridine in n-heptane and its rhodium complex in ethanol at T= 1.8 K. The triplet-state Sublevel scheme of both compounds is discussed. 相似文献
13.
The DFT calculations for nitrosyl manganese and cobalt porphyrins were carried out with the use of several density functionals. The binding energy of nitrosyl ligand and spin state of nitrosyl-free manganese porphyrin were determined. The best values of binding energy are obtained from the OLYP functional. The NBO analysis of metal?Cnitrosyl bonding was performed. Electronic spectra of nitrosyl cobalt and manganese porphyrin were calculated with the TDDFT method. The calculated electronic transitions agree well with the experimental data except for the Soret band of (Por)Mn(NO), where they are 0.3?C0.5?eV higher in energy than the experimental ones. 相似文献
14.
15.
Planar platinum(II) complexes Pt(bpyC≡CSiMe(3))(C≡CC(6)H(4)R-4)(2) (R = H (1), Bu(t) (2)) with 5-trimethylsilylethynyl-22'-bipyridine show an unusual, reversible, and reproducible mechanical stimuli-responsive color and luminescence switch. When crystalline 1 or 2 is ground, bright yellow-green emitting is immediately converted to red luminescence with an emission red shift of 121-155 nm for 1 or 53-89 nm for 2. Meanwhile, the crystalline state is transformed to an amorphous phase that can be reverted to the original crystalline state by organic vapor adsorbing or heating, along with red luminescence turning back to yellow-green emitting. The reversibility and reproducibility of luminescence mechanochromic properties have been dynamically monitored by the variations in emission spectra and X-ray diffraction patterns. The drastic grinding-triggered emission red shift is likely involved in the formation of a dimer or an aggregate through Pt-Pt interaction, resulting in a conversion of the (3)MLCT/(3)LLCT emissive state in the crystalline state into the (3)MMLCT triplet state in the amorphous phase. Compared with the drastic grinding-triggered emission red shift in 1 (121-155 nm), the corresponding response shift in 2 (53-89 nm) is much smaller since a bulky tert-butyl in C≡CC(6)H(4)bu(t)-4 induces the planar platinum(II) molecules to stack through a longer Pt-Pt distance and less intermetallic contact compared with that in 1, as suggested from EXAFS studies. 相似文献
16.
Bruno SM Monteiro B Balula MS Lourenço C Valente AA Pillinger M Ribeiro-Claro P Gonçalves IS 《Molecules (Basel, Switzerland)》2006,11(4):298-308
The tetrahedral triphenylsiloxy complex MoO(2)(OSiPh(3))(2) (1) and its Lewis base adduct with 2,2'-bipyridine, MoO(2)(OSiPh(3))(2)(bpy) (2), were prepared and characterised by IR/Raman spectroscopy, and thermogravimetric analysis. Both compounds catalyse the epoxidation of cis-cyclooctene at 55 degrees C using tert-butylhydroperoxide (t-BuOOH) is decane as the oxidant, giving 1,2-epoxycyclooctane as the only product. The best results were obtained in the absence of a co-solvent (other than the decane) or in the presence of 1,2-dichloroethane, while much lower activities were obtained when hexane or acetonitrile were added. With no co-solvent, catalyst 1 (initial activity 272 mol x molMo(-1) x h(-1)for a catalyst:substrate: oxidant molar ratio of 1:100:150) is much more active than 2(initial activity 12 mol x molMo(-1) x h(-1)). The initial reaction rates showed first order dependence with respect to the initial concentration of olefin. With respect to the initial amount of oxidant, the rate order dependence for 1 (1.9) was higher than that for 2 (1.6).The dependence of the initial reaction rate on reaction temperature and initial amount of catalyst was also studied for both catalysts. The lower apparent activation energy of 1 (11 kcal x mol(-1)) as compared with 2 (20 kcal x mol(-1)) is in accordance with the higher activity of the former. 相似文献
17.
18.
A series of novel mixed ligand dinickel complexes of the type [Ni(II)(2)L(μ-L')](+), where L' is a tetrahedral oxo-alkoxo vanadate (L' = [O(2)V(V)(OR)(2)](-), R = H or alkyl) and L a macrocyclic N(6)S(2) supporting ligand, have been prepared, and their esterification reactivity has been studied. The orthovanadate complex [Ni(2)L(μ-O(2)V(OH)(2))](+) (2), prepared by reaction between [Ni(2)L(μ-Cl)]ClO(4) with Na(3)VO(4) and a phase transfer reagent in CH(3)CN, reacts smoothly with MeOH and EtOH forming the vanadate diesters [Ni(2)L(μ-O(2)V(OMe)(2))](+) (3) and [Ni(2)L(μ-O(2)V(OEt)(2))](+) (4). The dialkyl orthovanadate esters in 3 and 4 are readily transesterified with mono- and difunctional alcohols. Complex 3 can also be generated from 4 by transesterification with MeOH. Complexes 3 and 4 react with diols (ethylene glycol, propylene glycol and diethylene glycol) as well to afford the complexes [Ni(2)L(μ-O(2)V(OH)(OCH(2)CH(2)OH))](+) (5), [Ni(2)L(μ-O(2)V(OCH(2))(2)CH(2))](+) (6), and [Ni(2)L(μ-O(2)V(OCH(2)CH(2))(2)O)] (7). The crystal structures of the tetraphenylborate salts of complexes 3-7 reveal in each case four-coordinate O(2)V(V)(OR)(2)(-) groups bonded in a μ(1,3)-bridging mode to generate trinuclear complexes with a central N(3)Ni(μ-S)(2)(μ(1,3)-O(2)V(OR)(2))NiN(3) core. The stabilization of the four-coordinate V(V)O(2)(OR)(2)(-) moieties is a consequence of both the two-point coordinative fixation to and the steric protection of the bowl-shape binding pocket of the [Ni(2)L](2+) fragment. Cyclic voltammetry experiments reveal that the encapsulated vanadate esters are not reduced in a potential window of -2.0 to +2.5 V vs SCE. The spins of the nickel(II) (S(i) = 1 ions) in 3 are weakly ferromagnetically coupled (J = +23 cm(-1), (H = -2JS(1)S(2))) to produce an S = 2 ground state. 相似文献
19.
20.