首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The G-quadruplex, a four-stranded DNA structure with stacked guanine tetrads (G-quartets), has recently been attracting attention because of its critical roles in vitro and in vivo. In particular, the G-quadruplex functions as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplex can show peroxidase-like activity with an anionic porphyrin, iron (III) protoporphyrin IX (hemin). Importantly, hemin binds to G-quadruplexes with high selectivity over single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), which is attributable to an electrostatic repulsion of phosphate groups in ssDNA and dsDNA. The G-quadruplex and hemin-G-quadruplex complex allow development of sensing techniques to detect DNA, metal ions and proteins. In addition to hemin, anionic phthalocyanines also bind to the G-quadruplex formed by human telomere DNA, specifically over ssDNA and dsDNA. Since the binding of anionic phthalocyanines to the G-quadruplex causes an inhibition of telomerase activity, which plays a role in the immortal growth of cancer cells, anionic phthalocyanines are promising as novel anticancer drug candidates. This review focuses on the specific binding of hemin and anionic phthalocyanines to G-quadruplexes and the applications in vitro and in vivo of this binding property.  相似文献   

2.
Bai G  Cao X  Zhang H  Xiang J  Ren H  Tan L  Tang Y 《Journal of chromatography. A》2011,1218(37):6433-6438
G-quadruplex DNA structure is considered to be a very attractive target for antitumor drug design due to its unique role in maintaining telomerase activities. Therefore, discovering ligands with high stability of G-quadruplex structure is of great interest. In this paper, high-performance liquid chromatography (HPLC) was used for fast screening of G-quadruplex ligands from the crude extract of Kalopanax septemlobus (Thunb.) Koidz, a traditional Chinese medicine. Four potent G-quadruplex ligands were firstly selected through HPLC by comparing the peak profiles and absorption intensity of the crude sample before and after interaction with G-quadruplex DNA. Then the target compounds were isolated and purified by high-speed countercurrent chromatography (HSCCC) for further confirmation of their stabilities of G-quadruplex by temperature-dependent circular dichroism (CD). Four compounds were isolated and identified as 2,4-dihydroxybenzoic acid (I), chlorogenic acid (II), caffeic acid (III) and 5-feruloylquinic acid (IV) each by MS and NMR. Finally, compound I, II, III were each proved to be potent G-quadruplex ligands by decreasing the peak intensity in HPLC chromatogram after complexation with G-quadruplex, which stabilize G-quadruplex by 7±2 °C, 10±2 °C, and 3±2 °C respectively, based on CD analyses. However, compound IV showed no G-quadruplex stability. The decrease of peak absorption intensity in HPLC chromatogram is the most important signal to find G-quadruplex ligands. This provides a very promising strategy for fast screening G-quadruplex ligands from natural plant extracts.  相似文献   

3.
4.
Boron(III) has been inserted into N-confused porphyrin, (NCPH)H2 (1), and N-fused porphyrin, (NFP)H (2). The reaction of dichlorophenylborane and 1 yields sigma-phenylboron N-confused porphyrin (4). The boron atom is bound by two pyrrolic nitrogen atoms and the sigma-phenyl ligand. The N-confused pyrrole ring is not involved in the direct coordination because the C(21)-H fragment remains intact. A reaction between PhBCl2 and N-fused porphyrin produces sigma-phenylboron N-fused porphyrin (3+). 4 converts quantitatively into 3+ under protonation. In sigma-phenylboron N-fused porphyrin [(NFP)BPh]Cl, the coordinating environment of boron(III) resembles a distorted trigonal pyramid, with the nitrogen atoms occupying equatorial positions and with the phenyl ligand lying at the unique apex. Boron(III) is displaced by 0.547(4) A from the N3 plane. The B-N distances are as follows: B-N(22), 1.559(4) A; B-N(23), 1.552(4) A; B-N(24), 1.568(4) A; B-C(ipsoPh), 1.621(4) A. 3+ can be classified as a boronium cation considering a filled octet and a complete coordination sphere. 3+ is susceptible to alkoxylation at the inner C(9) carbon atom, yielding 5-OR. The addition of acid results in protonation of the alkoxy group and elimination of alcohol, restoring the original 3+. Density functional theory has been applied to model the molecular and electronic structure of 4, 3+, and syn and anti isomers of methoxy adducts 5-OMe.  相似文献   

5.
A G-quadruplex is a nucleic acid secondary structure that is adopted by guanine-rich sequences, and is considered to be relevant in various pharmacological and biological contexts. G-Quadruplexes have also attracted great attention in the field of DNA nanotechnology because of their extremely high thermal stability and the availability of many defined structures. To date, a large repertory of DNA/RNA G-quadruplex-interactive ligands has been developed by numerous laboratories. Several relevant reviews have also been published that have helped researchers to grasp the full scope of G-quadruplex research from its outset to the present. This review focuses on the G-quadruplex ligands that allow targeting of specific G-quadruplexes. Moreover, unique ligands, successful methodologies, and future perspectives in relation to specific G-quadruplex recognition are also addressed.  相似文献   

6.
7.
meso-Tri(N-memyl-4-pyridinium)porphyrinyl-p-phenylene-5′-O-thymidine, interacting with plasmid ds DNA showed an 8 nm red-shift of the Soret band. The observed Soret band shift was 4 run less than the shift of the respective meso-tetra(N-methyl-4-pyridinium)porphyrin, which is usually assumed to indicate intercalation. Experimental spectra and the MMX- and AM-1 calculations of a series of model structures further suggest that the investigated porphyrinyl-thymidine also interacts with adenine due to its nucleobase. The possibility of intercalation was also viewed based on interaction of immobilized porphyrin with ds DNA. Theoretical considerations suggested that there are no steric limitations to the formation of a system in which the porphyrinyl-thymidine in question interacts with a molecule of porphyrinyl-adenosine, via A-T base pairing, to join two ds DNA molecules.  相似文献   

8.
利用紫外-可见吸收光谱、荧光光谱、圆二色谱(CD)等方法研究了色胺修饰竹红菌素(DTrpHA)及其稀土离子配位聚合物(Y3+-DTrpHA, La3+-DTrpHA)与小牛胸腺DNA (CT DNA)和G-四链体22AG的相互作用.结果表明, DTrpHA及其配位聚合物中的色胺基团和竹红菌素基团均参与和双链CT DNA的作用,作用方式主要为沟槽作用.与G-四链体DNA作用后, DTrpHA及其配位聚合物中的色胺基团均具有较大的减色效应(> 45%)和峰位红移(≥ 4 nm),说明色胺基团与G-四链体采用外部堆积作用方式结合;而竹红菌素基团的减色效应相对较小且无明显峰位变化,表明竹红菌素基团采用非特异性作用方式与G-四链体的环区碱基或糖-磷酸骨架结合. G-四链体22AG的构象主要为分子内反平行结构,加入DTrpHA及其配位聚合物对G-四链体22AG的构象影响较小. Y3+-DTrpHA比DTrpHA和La3+-DTrpHA与G-四链体具有更强的相互作用. Y3+-DTrpHA使得CT DNA的熔解温度(Tm)上升了仅1.9 ℃,而使G-四链体的熔解温度上升了13.1 ℃.荧光嵌插剂置换实验 (FID)结果表明, Y3+-DTrpHA对G-四链体具有良好亲和性,具有较小的G4DC50值(使噻唑橙/G-四链体体系荧光下降50%所需配体或配合物的浓度)和较高的G-四链体选择性.  相似文献   

9.
Herein, we report the design, synthesis and biophysical evaluation of novel 1,2,3-triazole-linked diethynyl-pyridine amides and trisubstituted diethynyl-pyridine amides as promising G-quadruplex binding ligands. We have used a Cu(I)-catalysed azide-alkyne cycloaddition click reaction to prepare the 1,2,3-triazole-linked diethynyl-pyridine amides. The G-quadruplex DNA binding properties of the ligands have been examined by using a F?rster resonance energy transfer (FRET) melting assay and surface plasmon resonance (SPR) experiments. The investigated compounds are conformationally flexible, having free rotation around the triple bond, and exhibit enhanced G-quadruplex binding stabilisation and specificity between intramolecular promoter G-quadruplex DNA motifs compared to the first generation of diaryl-ethynyl amides (J. Am. Chem. Soc. 2008, 130, 15950-15956). The ligands show versatility in molecular recognition and promising G-quadruplex discrimination with 2-50-fold selectivity exhibited between different intramolecular promoter G-quadruplexes. Circular dichroism (CD) spectroscopic analysis suggested that at higher concentration these ligands disrupt the c-kit2 G-quadruplex structure. The studies validate the design concept of the 1,3-diethynyl-pyridine-based scaffold and demonstrate that these ligands exhibit not only significant selectivity over duplex DNA but also variation in G-quadruplex interaction properties based on small chemical changes in the scaffold, leading to unprecedented differential recognition of different DNA G-quadruplex sequences.  相似文献   

10.
11.
N-fused porphyrin (NFP) is a unique class of photostable near-infrared dyes with an 18π aromatic tetrapyrrole macrocyclic skeleton containing a tri-fused pentacyclic moiety. Here, the synthesis of an iridium complex of N-fused bilatrienone is reported as the degradation product of Ir-cyclooctadiene (cod)-induced oxidative cleavage of NFP under aerobic conditions. Similar to the native bilin chromophores, the ring-opened complex featured a broken π-conjugation circuit and exhibited a broad visible absorption band. In contrast, metalation of NFP using an iridium(I)(cod) complex under an inert atmosphere resulted in the formation of a cod-isomerized (κ13-C8H12)-Ir complex.  相似文献   

12.
The electrochemical behavior of hemin, an iron complex of porphyrin, on binding to DNA at a glassy carbon electrode (GCE) and in solution, is described. Hemin, which interacts with covalently immobilized calf thymus DNA, was detected by use of a bare GCE, a double-stranded DNA-modified GCE (dsDNA-modified GCE), and a single-stranded DNA-modified GCE (ssDNA-modified GCE), in combination with differential pulse voltammetry (DPV). The structural conformation of DNA was determined from changes in the voltammetric signals acquired on reduction of hemin. As a result of its large steric structure and anionic substitution on its porphyrin plane, hemin intercalates between the base pairs of dsDNA. A scan-rate study for hemin and the dsDNA-hemin complex were also performed to determine the electrochemical behavior of the complex. The partition coefficient was obtained from the peak currents measured when different concentrations of hemin were in the presence of dsDNA. By observing the oxidation signals of guanine, damage to DNA after reaction with hemin at the GCE surface was also detected. The electrochemical detection of hybridization between the covalently immobilized probe and its target sequence was detected by use of hemin. These results demonstrate the use of DNA biosensors in conjunction with hemin for electrochemical detection of hybridization and damage to DNA.  相似文献   

13.
Biosensing processes such as molecular beacons require non-trivial effort to covalently label or mark biomolecules. We report here a label-free DNA assay system with a simple dye with aggregation-induced emission (AIE) characteristics as the fluorescent bioprobe. 1,1,2,2-Tetrakis[4-(2-bromoethoxy)phenyl]ethene is nonemissive in solution but becomes highly emissive when aggregated. This AIE effect is caused by restriction of intramolecular rotation, as verified by a large increase in the emission intensity by increasing viscosity and decreasing temperature of the aqueous buffer solution of 1,1,2,2-tetrakis[4-(2-triethylammonioethoxy)phenyl]ethene tetrabromide (TTAPE). When TTAPE is bound to a guanine-rich DNA strand (G1) via electrostatic attraction, its intramolecular rotation is restricted and its emission is turned on. When a competitive cation is added to the G1 solution, TTAPE is detached and its emission is turned off. TTAPE works as a sensitive poststaining agent for poly(acrylamide) gel electrophoresis (PAGE) visualization of G1. The dye is highly affinitive to a secondary structure of G1 called the G-quadruplex. The bathochromic shift involved in the G1 folding process allows spectral discrimination of the G-quadruplex from other DNA structures. The strong affinity of TTAPE dye to the G-quadruplex structure is associated with a geometric fit aided by the electrostatic attraction. The distinct AIE feature of TTAPE enables real-time monitoring of folding process of G1 in the absence of any pre-attached fluorogenic labels on the DNA strand. TTAPE can be used as a K+ ion biosensor because of its specificity to K+-induced and -stabilized quadruplex structure.  相似文献   

14.
In the fields of biocomputing and biomolecular, DNA molecules are applicable to be regarded as data of logical computing platform that uses elaborate logic gates to perform a variety of tasks. Graphene oxide (GO) is a type of novel nanomaterial, which brings new research focus to materials science and biosensors due to its special selectivity and excellent quenching ability. G-quadruplex as a unique DNA structure stimulates the intelligent application of DNA assembly on the strength of its exceptional binding activity. In this paper, we report a universal logic device assisted with GO and G-quadruplex under an enzyme-free condition. Integrated with the quenching ability of GO to the TAMRA (fluorophore, Carboxytetramethylrhodamine) and the enhancement of fluorescence intensity produced by the peculiar binding of G-quadruplex to the NMM (N-methylmesoporphyrin IX), a series of basic binary logic gates (AND. OR. INHIBIT. XOR) have been designed and verified through biological experiments. Given the modularity and programmability of this strategy, two advanced logic gates (half adder and half subtractor) were realized on the basis of the same work platform. The fluorescence signals generated from different input combinations possessed satisfactory results, which provided proof of feasibility. We believe that the proposed universal logical platform that operates at the nanoscale is expected to be utilized for future applications in molecular computing as well as disease diagnosis.  相似文献   

15.
本文合成了两种三联吡啶修饰的萘酰亚胺化合物NPI1和NPI2,并利用紫外-可见吸收光谱(UV-Vis)、圆二色光谱(CD)、荧光共振能量转移(FRET)等方法研究了它们与双链CT DNA和Htelo G-四链体DNA的相互作用。实验结果表明,化合物NPI1和NPI2对G-四链体DNA具有很好的结合能力和选择性,溶液中的碱金属离子种类和萘酰亚胺基团上的取代基对NPI1和NPI2与DNA的作用有很大的影响。在含K+的缓冲液中,NPI2与G-四链体的结合常数达到1.06×108 L/mol,是与双链CT DNA结合常数的268倍。圆二色谱结果表明在不含碱金属离子的溶液中,NPI1和NPI2可诱导Htelo DNA形成反平行结构G-四链体。Autodock分子对接模拟表明NPI1和NPI2可以通过堆积作用、静电作用、氢键等作用方式与G-四链体结合,使得它们对G-四链体具有很高亲和性(Ka>107 L/mol)。  相似文献   

16.
Nucleic (DNA) acids having contiguous stretch of G sequence form quadruplex structure, which is very critical to control cell division. Recently the existence of G-quadruplex in RNA is also reported in presence of monovalent metal ion. PNA is a promising DNA analogue which binds strongly to DNA to form PNA:DNA duplex or PNA(2):DNA triplex. PNA also forms quadruplexes such G-quadruplex and i-motif in G and C-rich sequences respectively. aep-PNA containing a prolyl ring is one of several PNA analogues that provide rigidity and chirality in backbone and has binding affinity to natural DNA which is higher than that of PNA. Here we examine the ability of aep-PNA-G to form a quadruplex by UV, CD and mass spectroscopic techniques.  相似文献   

17.
YES G-rich oligonucleotide VK2 folds into an AGCGA-quadruplex tetrahelical structure distinct and significantly different from G-quadruplexes, even though it contains four G3 tracts. Herein, a bis-quinolinium ligand 360A with high affinity for G-quadruplex structures and selective telomerase inhibition is shown to strongly bind to VK2. Upon binding, 360A does not induce a conformational switch from VK2 to an expected G-quadruplex. In contrast, NMR structural study revealed formation of a well-defined VK2–360A complex with a 1:1 binding stoichiometry, in which 360A intercalates between GAGA- and GCGC-quartets in the central cavity of VK2. This is the first high-resolution structure of a G-quadruplex ligand intercalating into a G-rich tetrahelical fold. This unique mode of ligand binding into tetrahelical DNA architecture offers insights into the stabilization of an AGCGA-quadruplex by a heterocyclic ligand and provides guidelines for rational design of novel VK2 binding molecules with selectivity for different DNA secondary structures.  相似文献   

18.
Structures formed by human telomere sequence (HTS) DNA are of interest due to the implication of telomeres in the aging process and cancer. We present studies of HTS DNA folding in an anhydrous, high viscosity deep eutectic solvent (DES) comprised of choline choride and urea. In this solvent, the HTS DNA forms a G-quadruplex with the parallel-stranded ("propeller") fold, consistent with observations that reduced water activity favors the parallel fold, whereas alternative folds are favored at high water activity. Surprisingly, adoption of the parallel structure by HTS DNA in the DES, after thermal denaturation and quick cooling to room temperature, requires several months, as opposed to less than 2 min in an aqueous solution. This extended folding time in the DES is, in part, due to HTS DNA becoming kinetically trapped in a folded state that is apparently not accessed in lower viscosity solvents. A comparison of times required for the G-quadruplex to convert from its aqueous-preferred folded state to its parallel fold also reveals a dependence on solvent viscosity that is consistent with Kramers rate theory, which predicts that diffusion-controlled transitions will slow proportionally with solvent friction. These results provide an enhanced view of a G-quadruplex folding funnel and highlight the necessity to consider solvent viscosity in studies of G-quadruplex formation in vitro and in vivo. Additionally, the solvents and analyses presented here should prove valuable for understanding the folding of many other nucleic acids and potentially have applications in DNA-based nanotechnology where time-dependent structures are desired.  相似文献   

19.
G4-FID (G-quadruplex fluorescent intercalator displacement) is a simple and fast method that allows to evaluate the affinity of a compound for G-quadruplex DNA and its selectivity towards duplex DNA. This assay is based on the loss of fluorescence of thiazole orange (TO) upon competitive displacement from DNA by a putative ligand. We describe here the development of a high-throughput version of this assay performed in 96-well microplates, and fully transposable to 384-well microplates. The test was calibrated with a set of G-quadruplex ligands characterized for their ability to bind quadruplex within a large range of affinity. The comparison of the results obtained in microplates and in cuvettes was conducted indicating a full agreement. Additionally, the spectral range of the test was enlarged using two other fluorescent on/off probes whose absorption are red-shifted (TO-PRO-3) and blue-shifted (Hoechst 33258) as compared to that of TO. These labels enable to screen a large diversity of compounds with various optical properties, which was exemplified by evaluation of affinity and selectivity of the porphyrin TMPyP4 that could not be evaluated previously. Altogether, our study demonstrates that the HT-G4-FID assay offers the possibility to label a large variety of G-quadruplexes of biological interest and should enable screening of collections of putative G4-ligands of high structural diversity. It thus represents a powerful tool to bring into light new ligands able to discriminate between quadruplexes of different structures.  相似文献   

20.
Template-assembled synthetic G-quartet (TASQ) has been reported recently as a G-quadruplex ligand interacting with DNA according to an unprecedented, nature-inspired 'like likes like' approach, based on the association between two G-quartets, one being native (quadruplex) and the other one artificial (ligand). Herein, a novel TASQ-based ligand is designed, synthesized and its quadruplex-recognition properties are evaluated in vitro: PorphySQ (for porphyrin-templated synthetic G-quartet) displays enhanced quadruplex recognition properties as compared to the very first reported prototype (DOTASQ, for DOTA-templated synthetic G-quartet), since the porphyrin template insures a more stable intramolecular G-quartet fold due to self-stabilizing interactions that may take place intramolecularly between the porphyrin ring and the formed G-quartet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号