首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
石榴石型Li7La3Zr2O12(LLZO)离子导电性高,在全固态锂离子电池中具有潜在的应用价值。但目前报道的LLZO制备工艺烧结温度范围宽,稳定性差,不利于宏量制备。本文以烧结产物物相结构和结晶度为考察指标,系统研究了锂源及用量、烧结温度、烧结时间等因素对LLZO成相的影响。结果表明,当以分解温度较低的锂盐(LiNO3)为原料时,在800℃下得到四方相LLZO,900℃时呈立方相LLZO;当以分解温度较高的锂盐(Li2CO3)为原料时,900℃才能形成四方相LLZO。烧结时间的延长和温度升高均会导致锂的挥发损失,影响LLZO物相的形成。通过增加锂盐用量、改变烧结前驱体聚集特性与烧结时间可抑制锂的挥发。当以过量10%的Li2CO3为原料时,900℃烧结6h可稳定的得到立方相LLZO。该研究较为系统地分析了制备工艺对LLZO成相的影响,可为LLZO宏量稳定制备提供借鉴。  相似文献   

2.
In this study, both experimental ionic conductivity measurements and the first-principles simulations are employed to investigate the Li(+) ionic diffusion properties in lithium-based imides (Li(2)NH, Li(2)Mg(NH)(2) and Li(2)Ca(NH)(2)) and lithium amide (LiNH(2)). The experimental results show that Li(+) ions present superionic conductivity in Li(2)NH (2.54 × 10(-4) S cm(-1)) and moderate ionic conductivity in Li(2)Ca(NH)(2) (6.40 × 10(-6) S cm(-1)) at room temperature; while conduction of Li(+) ions is hardly detectable in Li(2)Mg(NH)(2) and LiNH(2) at room temperature. The simulation results indicate that Li(+) ion diffusion in Li(2)NH may be mediated by Frenkel pair defects or charged vacancies, and the diffusion pathway is more likely via a series of intermediate jumps between octahedral and tetrahedral sites along the [001] direction. The calculated activation energy and pre-exponential factor for Li(+) ion conduction in Li(2)NH are well comparable with the experimentally determined values, showing the consistency of experimental and theoretical investigations. The calculation of the defect formation energy in LiNH(2) reveals that Li defects are difficult to create to mediate the Li(+) ion diffusion, resulting in the poor Li(+) ion conduction in LiNH(2) at room temperature.  相似文献   

3.
The continuous development of solid-state electrolytes(SSEs) has stimulated immense progress in the development of all-solid-state batteries(ASSBs). Particularly, garnet-typed SSEs in formula of Li7La3Zr2O12(LLZO) are under intensive investigation to exploit their advantage in high lithium ions conductivity(>1 mS/cm), wide electrochemical window(>5 V), and good chemical electrochemical stability for lithium, which are critical factors to ensure a stable, and high performance ASSBs. This review will focus on the challenges related to LLZOs-based electrolyte, and update the recent developments in structural design of LLZOs, which are discussed in three major sections:(i) crystal structure and the lithium-ion transport mechanism of LLZO; (ii) single-site and multi-site doping of Li sites, La sites and Zr sites to enhance Li ions conductivity(LIC) and stability of LLZO; (iii) interface strategies between electrodes and LLZO to decrease interface area-specific resistance(ASR).  相似文献   

4.
Polymer–ceramic composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high‐performance all‐solid‐state rechargeable batteries. Composite electrolytes have been prepared with cubic‐phase Li7La3Zr2O12 (LLZO) garnet and polyethylene oxide (PEO) and employed in symmetric lithium battery cells. By combining selective isotope labeling and high‐resolution solid‐state Li NMR, we are able to track Li ion pathways within LLZO‐PEO composite electrolytes by monitoring the replacement of 7Li in the composite electrolyte by 6Li from the 6Li metal electrodes during battery cycling. We have provided the first experimental evidence to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO‐LLZO interface or PEO. This approach can be widely applied to study ion pathways in ionic conductors and to provide useful insights for developing composite materials for energy storage and harvesting.  相似文献   

5.
Recent research has shown that certain Li-oxide garnets with high mechanical, thermal, chemical, and electrochemical stability are excellent fast Li-ion conductors. However, the detailed crystal chemistry of Li-oxide garnets is not well understood, nor is the relationship between crystal chemistry and conduction behavior. An investigation was undertaken to understand the crystal chemical and structural properties, as well as the stability relations, of Li(7)La(3)Zr(2)O(12) garnet, which is the best conducting Li-oxide garnet discovered to date. Two different sintering methods produced Li-oxide garnet but with slightly different compositions and different grain sizes. The first sintering method, involving ceramic crucibles in initial synthesis steps and later sealed Pt capsules, produced single crystals up to roughly 100 μm in size. Electron microprobe and laser ablation inductively coupled plasma mass spectrometry (ICP-MS) measurements show small amounts of Al in the garnet, probably originating from the crucibles. The crystal structure of this phase was determined using X-ray single-crystal diffraction every 100 K from 100 K up to 500 K. The crystals are cubic with space group Ia3?d at all temperatures. The atomic displacement parameters and Li-site occupancies were measured. Li atoms could be located on at least two structural sites that are partially occupied, while other Li atoms in the structure appear to be delocalized. (27)Al NMR spectra show two main resonances that are interpreted as indicating that minor Al occurs on the two different Li sites. Li NMR spectra show a single narrow resonance at 1.2-1.3 ppm indicating fast Li-ion diffusion at room temperature. The chemical shift value indicates that the Li atoms spend most of their time at the tetrahedrally coordinated C (24d) site. The second synthesis method, using solely Pt crucibles during sintering, produced fine-grained Li(7)La(3)Zr(2)O(12) crystals. This material was studied by X-ray powder diffraction at different temperatures between 25 and 200 °C. This phase is tetragonal at room temperature and undergoes a phase transition to a cubic phase between 100 and 150 °C. Cubic "Li(7)La(3)Zr(2)O(12)" may be stabilized at ambient conditions relative to its slightly less conducting tetragonal modification via small amounts of Al(3+). Several crystal chemical properties appear to promote the high Li-ion conductivity in cubic Al-containing Li(7)La(3)Zr(2)O(12). They are (i) isotropic three-dimensional Li-diffusion pathways, (ii) closely spaced Li sites and Li delocalization that allow for easy and fast Li diffusion, and (iii) low occupancies at the Li sites, which may also be enhanced by the heterovalent substitution Al(3+) ? 3Li.  相似文献   

6.
Lithium garnets are promising solid-state electrolytes for next-generation lithium-ion batteries. These materials have high ionic conductivity, a wide electrochemical window and stability with Li metal. However, lithium garnets have a maximum limit of seven lithium atoms per formula unit (e.g., La3Zr2Li7O12), before the system transitions from a cubic to a tetragonal phase with poor ionic mobility. This arises from full occupation of the Li sites. Hence, the most conductive lithium garnets have Li between 6–6.55 Li per formula unit, which maintains the cubic symmetry and the disordered Li sub-lattice. The tetragonal phase, however, forms the highly conducting cubic phase at higher temperatures, thought to arise from increased cell volume and entropic stabilisation permitting Li disorder. However, little work has been undertaken in understanding the controlling factors of this phase transition, which could enable enhanced dopant strategies to maintain room temperature cubic garnet at higher Li contents. Here, a series of nine tetragonal garnets were synthesised and analysed by variable temperature XRD to understand the dependence of site substitution on the phase transition temperature. Interestingly the octahedral site cation radius was identified as the key parameter for the transition temperature with larger or smaller dopants altering the transition temperature noticeably. A site substitution was, however, found to make little difference irrespective of significant changes to cell volume.  相似文献   

7.
辐照交联法制备锂离子电池用凝胶聚合物电解质及其性能   总被引:2,自引:0,他引:2  
采用γ-射线辐照交联法制备了具有网络结构的聚偏氟乙烯-六氟丙烯/新戊二醇二丙烯酸酯(PVDF-HFP/NPGDA)基凝胶聚合物电解质(GPE). 考察了不同辐照剂量对凝胶电解质形貌结构、热稳定性和电化学性能的影响以及不同辐照剂量和不同温度下电导率的变化. 结果表明, 随辐照剂量的增加, 凝胶电解质的固化程度提高, 电导率下降. 电导率随温度的变化符合VTF方程. 当辐照剂量为5 kGy 时, 制备的凝胶电解质具有较高的离子电导率和电化学稳定窗口, 室温下分别为7.8×10-3 S·cm-1和4.7 V(vs Li/Li+). 以其为电解质制备的LiMn2O4∣GPE∣Li聚合物锂离子电池具有较好的循环性能.  相似文献   

8.
In this paper we report the successful incorporation of silicon into SrMO(3) (M = Co, Mn) leading to a structural change from a hexagonal to a cubic perovskite. For M = Co, the cubic phase was observed for low doping levels (3%), and these doped phases showed very high conductivities (up to ≈350 Scm(-1) at room temperature). However, annealing studies at intermediate temperatures (700-800 °C), indicated that the cubic phase was metastable with a gradual transformation to a hexagonal cell on annealing. Further work showed that co-doping with Fe resulted in improved stability of the cubic phase; a composition SrCo(0.85)Fe(0.1)Si(0.05)O(3-y) displayed good stability at intermediate temperatures and a high conductivity (≈150 Scm(-1) at room temperature). For M = Mn, the work showed that higher substitution levels were required to form the cubic perovskite (≈15% Si doping), although in these cases the phases were shown to be stable to annealing at intermediate temperatures. Conductivity measurements again showed an enhancement in the conductivity on Si doping, although the conductivities were lower (≈0.3-14 Scm(-1) in the range 20-800 °C) than the cobalt containing systems. The conductivities of both systems suggest potential for use as cathode materials in solid oxide fuel cells.  相似文献   

9.
Reversible phase transitions of bismuth niobate Bi3NbO7 have been observed: from the lowtemperature cubic modification to the tetragonal one at 860°C and from the tetragonal modification to the hightemperature cubic one at 950–980°C. With increasing temperature of the cubic modification preparation, the unit cell parameter has been decreasing. Electrophysical properties of the cubic phases have matched at the frequencies below 1 kHz (up to 650 K). The specific conductivity of the tetragonal phase exceeds that of the cubic phase by no more than an order of magnitude (below 1000 K).  相似文献   

10.
The crystal structure and dielectric properties of slowly cooled A-site-deficient perovskites Li(x)Sr(x)La(2/3-x)□(1/3-x)TiO(3) (0.04 ≤ x ≤ 0.33) have been investigated by powder X-ray diffraction (XRD), impedance spectroscopy, and (7)Li NMR techniques. In this series, nominal vacancies decrease with Li content, but the total amount of A-site vacancies, n(t) = Li + □, participating in conduction processes remains basically constant. Rietveld analysis of the XRD patterns showed a change of symmetry from orthorhombic to tetragonal when the lithium and strontium contents increased above x = 0.08 and from tetragonal to cubic above x = 0.16. Structural modifications are mainly due to the cation vacancy ordering along the c axis, which disappear gradually when the lithium content increases. In agreement with the structural information, two lithium signals with different quadrupole constants are detected in (7)Li NMR spectra of orthorhombic/tetragonal phases, which have been associated with lithium in two crystallographic z/c = 0 and 1/2 planes of perovskites. In cubic samples, only a single narrow component, indicative of mobile species, was detected. Lithium motion was thermally activated, with activation energies going from 0.35 to 0.38 eV. Evolution of the bulk dc-conductivity preexponential factors along the series showed a maximum that has been first related to the dependence of lithium hopping on the lithium and vacancy concentrations. Finally, changes in the vacancy ordering, produced along the series, affect the dimensionality of the conductivity, indicating that not only the amount of vacancies but also its distribution are relevant.  相似文献   

11.
IntroductionThesecondarylithium ionbatterieshaverecentlybecomeoneofthechemicalenergysourceswhichhavebeenresearchedanddevelopedintheworldbecauseoftheirbiggerspecificcapacity ,lighterweight ,higheroperatingvoltage ,longercycliclifeandbettersecuri ty[1— 3] .LiClO4 ,LiAsF6 andLiPF6 aremainlyusedaselectrolytesinthecommercializedlithium ioncellsintheworldinspiteoftheirdisadvantages:LiClO4 isalittleunsafewhichwillbedetonablewhenbeingbumpedandishygroscopic ;LiAsF6 ispoisonousanditisanenvironment…  相似文献   

12.
采用高温固相反应,以NH4VO3为钒源合成了化学计量式为(1-x)LiFe0.5Mn0.5PO4-xLi3V2(PO4)3/C(x=0,0.1,0.2,0.25,1)的钒改性磷酸锰铁锂正极材料.电化学测试表明钒改性能明显提高磷酸锰铁锂材料的充放电性能,其中x=0.2时得到的0.8LiFe0.5Mn0.5PO4-0.2Li3V2(PO4)3/C(标记为LFMP-LVP/C)材料电化学性能最好,其0.1C倍率时的放电比容量为141mAh·g-1.X射线衍射(XRD)分析指出LFMP-LVP/C材料的微观结构为橄榄石型LiFe0.5Mn0.5PO4/C和NASICON型Li3V2(PO4)3组成的双相结构.能量色射X射线谱(EDS)分析结果指出,Fe、Mn、V、P元素在所合成材料中的分布非常均匀,表明所制备材料成分的均一性.Li3V2(PO4)3改性使材料的电导率明显提高.LiFe0.5Mn0.5PO4的电导率为1.9×10-8S·cm-1,而LFMP-LVP材料电导率提高到2.7×10-7S·cm-1.与纯Li3V2(PO4)3的电导率(2.3×10-7S·cm-1)相近.电化学测试表明钒改性使LFMP-LVP/C材料充放电过程电极极化明显减小,从而电化学性能得到显著提高.本文工作表明Li3V2(PO4)3改性可成为提高橄榄石型磷酸盐锂离子电池正极材料电化学性能的一种有效方法.  相似文献   

13.
梳状高分子固体电解质的离子导电性研究   总被引:2,自引:2,他引:0  
丁黎明 《电化学》1996,2(3):299-304
深入研究了交替马来酸酐共聚物多缩乙二醇酯(CP350)两种锂盐络合物CP350/LiAsF_6和CP350/LiPF_6的离子传导性能,给出了与复阻抗谱相对应的等效电路.离子电导率随[Li]/[EO]的变化而出现一极大值,室温下,两体系电导率极大值分别为1.38×10(-4),8.32×10(-5)S/cm.电导率随温度升高而增加.导电行为呈非-Arrhenius特征.阴阳离子半径之和(r_c+r_a)愈大,离子电导率愈高.  相似文献   

14.
本文采用固相法制备了Ta 5+掺杂的石榴石型无机固体电解质Li7-xLa3Zr2-xO12xTa-LLZO),研究了不同的掺杂量对材料性能的影响. 通过X射线发射光谱(XRD)、冷场发射电子扫描电镜(FESEM)和电化学阻抗(EIS)对材料进行物理表征和阻抗测试,并且组装LiFePO4//LLZTO//Li全固态锂电池测试电池的循环稳定性. 结果表明,随着Ta 5+掺杂的增加,材料呈现出一个单一的立方相结构,当Ta 5+掺杂量为14.09wt.%(即x=0.3)时,材料的室温离子电导率达到最大(2.58×10 -4 S·cm -1),呈现出稳定的立方相结构且具有相对较高的致密度(89.16%),并具有较稳定的循环稳定性,经过50个循环后容量保持率依然保持到88.67%左右.  相似文献   

15.
Li3Sc2(PO4)3因具有有利的离子传导通道、低的电子电导率和高的稳定性而成为全固态锂离子电池用固体电解质最具竞争力的材料之一,然而这一化合物只有在245℃以上的γ相才具有快离子传导特性。人们主要采用Zr4+、Ti4+等阳离子部分取代其中的Sc3+以改善材料的室温电导率,有关该化合物PO43-阴离子替代的报道还很少。本研究试图利用机械研磨技术,通过向Li3Sc2(PO4)3原料混合物中加入适量SiO2,以期能够实现对该化合物的部分阴离子替代。研究结果表明:所制备的Li3+xSc2(PO4)3-x(SiO4)x(x=0~0.6)系列化合物在x=0.15时电导率达到最大值,σ298=9.55×10-4 S.m-1,离子传导激活能达到最小值45.06 kJ.mol-1。29Si MAS-NMR测试结果证实所加入的SiO2主要以[SiO4]四面体形式存在替代Li3Sc2(PO4)3中部分[PO4]四面体。  相似文献   

16.
LiMn1.95Ni0.05O3.98F0.02 octahedral particles with lithium-ion solid electrolyte Li7La3Zr2O12 (LLZO) coating are prepared by a Pechini method. The relationship between the structure and electrochemical performance of the modified samples is investigated. As revealed by X-ray diffraction and scanning electron microscope, LLZO coating does not change the cubic spinel crystal structure of the pristine matrix (space group $ Fd\overline{3}m $ ). Moreover, the LLZO coating materials exist as nanosheets or nanoparticles. The morphology of the coating varies as the weight percentage increases from 1.0 to 3.0. LiMn1.95Ni0.05O3.98F0.02 coated with 2.0 wt% LLZO exhibits better cycle performance and rate capability at elevated temperature (i.e., 55 °C), while the coating exists as distinct reticulation covering the surface.  相似文献   

17.
A fluorine‐doped antiperovskite Li‐ion conductor Li2(OH)X (X=Cl, Br) is shown to be a promising candidate for a solid electrolyte in an all‐solid‐state Li‐ion rechargeable battery. Substitution of F? for OH? transforms orthorhombic Li2OHCl to a room‐temperature cubic phase, which shows electrochemical stability to 9 V versus Li+/Li and two orders of magnitude higher Li‐ion conductivity than that of orthorhombic Li2OHCl. An all‐solid‐state Li/LiFePO4 with F‐doped Li2OHCl as the solid electrolyte showed good cyclability and a high coulombic efficiency over 40 charge/discharge cycles.  相似文献   

18.
A relatively simple galvanostatic method was used for the evaluation on the average chemical diffusion coefficient of lithium-ion in spinel Li4Ti5O12 prepared by solid-state reaction technique. The diffusion coefficient of lithium-ion was estimated to be 2.8×10-13 cm2·s-1 and 1.3×10-13 cm2·s-1 for charge and discharge, respectively.  相似文献   

19.
一种新型凝胶态聚合物电解质的制备和性能   总被引:1,自引:0,他引:1  
采用一种新型胶联剂新戊二醇二丙烯酸酯(noepentyl glycol diacrylate, NPGDA)和聚偏氟乙烯-六氟丙烯(poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP), 液态电解液组成电解质混合溶液, 然后加入引发剂并加热引发聚合反应制备了一种具有互穿聚合物网络结构的凝胶态聚合物电解质, 可以用于制备聚合物锂离子二次电池. 考察了不同PVDF-HFP/NPGDA质量比对凝胶态聚合物电解质性能的影响. 结果表明, PVDF-HFP/NPGDA质量比可以影响凝胶态聚合物电解质的结构形貌、电化学特性以及聚合物锂离子二次电池的性能. 研究发现, 当m(PVDF-HFP)/m(NPGDA)=1:1时制备的凝胶态聚合物电解质具有较高的离子电导率和电化学稳定窗口, 室温下分别为6.99×10-3 S•cm-1和4.8 V(vs Li+/Li), 以其为电解质制备的聚合物锂离子二次电池具有较好的电化学性能.  相似文献   

20.
其鲁 《高分子科学》2006,(2):213-220
A copolymer of poly(acrylonitrile-co-styrene) (SAN) was synthesized via an emulsion polymerization method. Novel polymer electrolyte membranes cast from the blends of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), SAN and fumed silica (SiO2) are microporous and can be used in polymer lithium-ion batteries. The membrane shows excellent characteristics such as high ionic conductivity and good mechanical strength when the mass ratio between SAN and PVDF-HFP and SiO2 is 3.5/31.5/5. The ionic conductivity of the membrane soaked in a liquid electrolyte of 1 mol/L LiPF6/EC/DMC/DEC is 4.9×10-3 S cm-1 at 25℃. The membrane is electrochemical stable up to 5.5 V versus Li /Li in the liquid electrolyte. The influences of SiO2 content on the porosity and mechanical strength of the membranes were studied. Polymer lithium-ion batteries based on the membranes were assembled and their performances were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号