首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用射频磁控溅射法制备Ti金属薄膜作为反应电极,结合脉冲激光沉积法在Pt/Ti/Si衬底上制备了Ti/非晶-SrTiO3-δ (STO)/Pt结构的阻变存储器件单元.器件的有效开关次数可达200次以上.利用5 mV的小电压测量处于高低阻态的器件电阻,发现在经过3.1 ×105 s以后,两种阻态的电阻值均没有明显的变化,说明器件具有较好的保持特性.器件处于高阻态和低阻态的电阻比值可达100倍以上.在9mA的限制电流下,器件的低阻态为500 Ω,有利于降低电路的功耗.氧离子和氧空位的迁移在阻变开关中起到重要的作用,界面层TiOx发挥着氧离子库的作用.阻变开关机制归因为导电细丝(Filaments)的某些部分出现氧化或者还原现象,造成导电细丝的形成和断开.  相似文献   

2.
采用磁控溅射系统在Pt衬底上构建了Ag/BiFeO3 (BFO)/Pt三明治结构的阻变存储器件单元,该器件可以在较低的限制电流下实现阻变行为并显著降低功耗.在0.5 μA的低限制电流下,器件具较好双极I-V滞回曲线,开关电阻比值超过1个数量级,有效开关次数达500次以上,阻态保持时间超过1.8 ×104 s,有较好的保持特性.分析了该Ag/BFO/Pt器件的阻变开关机制,主要归因于Ag原子在BFO薄膜内的氧化还原反应引起的金属导电细丝的形成与断开.  相似文献   

3.
采用射频磁控溅射在二氧化硅衬底上沉积一层厚度200 nm的非晶In-Ga-Zn-O(IGZO)薄膜,并在IGZO膜层上沉积厚度分别为20 nm、50 nm、60 nm、70 nm、90 nm的SiNX薄膜覆盖层,于350℃条件下N2气氛中退火1 h.采用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、能量色散谱仪(EDS)对IGZO薄膜的微观结构及成分进行研究.研究结果表明,退火后无覆盖层的IGZO膜层仍为非晶状态,70 nm以上SiNX覆盖层下的IGZO薄膜不发生晶化.与此不同,20~60 nm的SiNX覆盖层下IGZO膜层与SiNX覆盖层的界面处存在纳米凸起柱,使IGZO薄膜与SiNX覆盖层的接触界面脱离,此厚度的SiNX覆盖层具有诱导非晶IGZO薄膜晶化的作用,IGZO膜层内部的晶粒直径约10 nm.成分分析结果表明,结晶处In原子含量增加,IGZO薄膜中In原子的局域团聚是IGZO薄膜发生晶化的原因.  相似文献   

4.
采用磁控溅射方法沉积TiO2薄膜及电极层,制备W/TiO2/ITO薄膜阻变存储器单元.利用原子力显微镜、X射线衍射仪、X射线光电子能谱仪对薄膜进行表征,测试结果表明:TiO2薄膜表面平整、致密;组织结构以非晶为主,仅有少量的金红石相TiO2(110)面结晶;钛氧比为1∶1.92,其内部存在少量的氧空位.在电学测试中,元件呈现出了稳定的双极阻变现象,VSet分布在0.92 V左右,VReset分布在-0.82 V左右;元件窗口值稳定,数据保持特性良好.通过对元件Ⅰ-Ⅴ曲线线性拟合结果的分析,我们认为元件的阻变机理由导电细丝机制主导.进一步的分析发现,该导电细丝是由钨原子构成,钨原子在电场作用下发生氧化还原反应并在TiO2薄膜层中迁移,造成了导电细丝的形成和断裂.  相似文献   

5.
Ag掺杂ZnO薄膜结构和光学特性研究   总被引:3,自引:1,他引:2  
采用脉冲激光沉积技术制备出了Ag掺杂的ZnO薄膜.研究了Ag含量、衬底温度及氧压对ZnO结构和光学性能的影响.结果表明:Ag以替位形式存在于ZnO晶格中,Ag掺杂浓度较低时,样品具有高度c轴择优取向.衬底温度越高,薄膜的结晶质量越好,光学带隙越接近纯ZnO的带隙,而其紫外荧光峰在衬底温度为300 ℃时最强.氧压为10 Pa时,薄膜的结晶质量最好,紫外峰最强,其带隙则随氧压的增大呈先变窄后加宽的趋势.  相似文献   

6.
孔帅  吴敏  聂凡  曾冬梅 《人工晶体学报》2022,51(11):1878-1883
采用磁控溅射法在ITO玻璃上制备了CdZnTe薄膜,探究机械磨抛对CdZnTe薄膜阻变特性的影响。通过对XRD图谱、Raman光谱、AFM显微照片等实验结果分析阐明了机械磨抛影响CdZnTe薄膜阻变特性的物理机制。研究结果表明,磁控溅射制备的薄膜为闪锌矿结构,F43m空间群。机械磨抛提高了CdZnTe薄膜的结晶质量;CdZnTe薄膜粗糙度(Ra)由磨抛前的3.42 nm下降至磨抛后的1.73 nm;磨抛后CdZnTe薄膜透过率和162 cm-1处的类CdTe声子峰振动峰增强;CdZnTe薄膜的阻变开关比由磨抛前的1.2增加到磨抛后的4.9。机械磨抛提高CdZnTe薄膜质量及阻变特性的原因可能是CdZnTe薄膜在磨抛过程中发生了再结晶。  相似文献   

7.
采用射频磁控溅射法在室温玻璃衬底上成功地制备出了铟镓锌氧(In-Ga-Zn-O)透明导电薄膜.研究了不同溅射功率对In-Ga-Zn-O薄膜结构、电学和光学性能的影响.X射线衍射(XRD)表明,在80~150 W溅射功率范围内In-Ga-Zn-O薄膜为非晶结构.随着溅射功率的增加,生长速率成线性增加,电阻率逐渐降低.透射光谱显示在350 nm附近出现较陡的吸收边缘,说明In-Ga-Zn-O薄膜在以上溅射功率范围内具有良好的薄膜质量.光学禁带宽度随着溅射功率增加而减小.In-Ga-Zn-O薄膜在500~800nm可见光区平均透过率超过90;.  相似文献   

8.
采用密度泛函理论,研究了Ag(111)纳米薄膜的结构稳定性、电子特性及光学性能.结果表明,Ag (111)纳米薄膜原子层厚度增加到13层,即膜厚约为2.8nm时,纳米薄膜表面能趋于稳定,为薄膜能够稳定存在的临界厚度.薄膜表面处原子间为弱离子键作用,层间距变化及表面效应主要集中在表面附近几层.在可见光及红外波段,Ag(111)纳米薄膜的折射率明显高于块体材料而消光系数略高于块体材料;随着薄膜厚度的增加,在该波段,折射率减小,消光系数增加,吸收变大.  相似文献   

9.
采用射频磁控溅射技术在室温下玻璃衬底上制备了铟镓锌氧(In-Ga-Zn-O)透明导电薄膜,并对该薄膜进行了真空退火.研究了不同退火温度对In-Ga-Zn-O薄膜结构、电学和光学性能的影响.X射线衍射(XRD)表明,在300℃至500℃退火温度范围内,In-Ga-Zn-O薄膜为非晶结构.随着退火温度的增加,薄膜的电阻率先减小后增大.透射光谱显示退火后In-Ga-Zn-O薄膜在500~ 800 nm可见光区平均透过率超过80;,且在350 nm附近表现出较强的紫外吸收特性.经过退火的薄膜光学禁带宽度随着退火温度的增加先增大后减小,350 ℃最大达到3.91 eV.  相似文献   

10.
Ag掺杂ZnO薄膜光催化降解苯酚的试验研究   总被引:2,自引:0,他引:2  
本文采用溶胶-凝胶法在石英玻璃基底上制备出性能优良的Ag掺杂的纳米ZnO薄膜,并通过XRD、AFM和UV-Vis吸收光谱对薄膜的结构及光吸收特性进行表征.以苯酚为被降解物,进一步研究了不同掺杂浓度对其光催化性能的影响.结果表明,ZnO:Ag摩尔比为30:1的样品催化效果最佳.  相似文献   

11.
海洋电场传感器低噪声Ag/AgCl电极的制备及性能   总被引:1,自引:0,他引:1  
分别通过研磨法、球磨法、液相沉淀法和微反应器法制备了Ag/AgCl电极所用的AgCl前驱粉体,对其进行了形貌和成分分析,并对电极短期稳定性、电化学噪声的水平进行了测试。结果表明:相比之下,球磨法所制备的Ag/AgCl电极一致性好,同种电极之间的极差电位小于0.11125 mV。该电极具有良好的短期稳定性能,电位差漂移量不超过0.01906 mV/24 h,电极电压噪声密度在1 Hz处可降低至19.16 nV/Hz1/2。  相似文献   

12.
本文采用直流磁控溅射分层溅射制备了氧化铟锡(ITO)/银(Ag)/ITO多层复合薄膜。系统研究了溅射温度对ITO/Ag/ITO多层复合薄膜的结构和光电性能影响。采用ITO(m(In2O3)∶m(SnO2)=9∶1;直径60 mm)靶材和Ag(纯度99.999%;直径60 mm)靶材分层溅射,使ITO薄膜和Ag薄膜依次沉积在钠-钙玻璃基片上。结果表明,溅射温度对该薄膜的形貌和结构具有显著的影响。在中间Ag薄膜和顶层ITO薄膜的溅射温度均为120 ℃时,薄膜表面晶粒形貌由类球形转变为菱形,此时薄膜方阻为3.68 Ω/Sq,在488 nm处透射率为88.98%,且品质因数为0.03 Ω-1,实现了低方阻高可见光透射率ITO/Ag/ITO多层复合薄膜的制备。  相似文献   

13.
采用溶胶-凝胶工艺在p+-Si基片上制备了La0.67Ca0.33Mn O3薄膜,构建了Ag/La0.67Ca0.33Mn O3/p+-Si三明治结构的阻变器件,研究了器件的电致阻变性能。结果表明:Ag/La0.67Ca0.33Mn O3/p+-Si器件具有明显的双极性阻变特性,其高阻态(HRS)与低阻态(LRS)比(HRS/LRS)高于104,器件在高阻态和低阻态的电荷传导机制分别遵循Schottky势垒导电机制与空间电荷限制电流机制(SCLC)。器件在2×103次可逆循环测试下,高、低阻态比无明显变化,表现出良好的抗疲劳特性。根据器件的高、低阻态阻抗谱,可以得到阻变效应是由器件界面的肖特基势垒的改变与器件内部缺陷填充共同作用的。  相似文献   

14.
采用溶胶-凝胶工艺在p型单晶硅衬底上制备了La0.7Mg0.3MnO3薄膜,对薄膜的微观结构及Ag/La0.7Mg0.3MnO3/p+-Si器件的电致阻变性能进行了研究.结果表明:La0.7Mg0.3MnO3薄膜在经过700℃退火2h后为单一的钙钛矿结构,沿(112)晶向择优生长,薄膜致密平整;Ag/La0.7Mg0.3MnO3/p+-Si阻变器件具有典型的双极型阻变特性,具有非常高的电阻开关比,其高阻态(HRS)与低阻态(LRS)的比值高于105,以及较佳的耐疲劳性能,器件在1000次循环后高、低阻态比值没有明显变化;器件在高阻态(HRS)时的导电机制为Schotty势垒发射效应,低阻态(LRS)导电机制为导电细丝机制.  相似文献   

15.
祁琰媛  郑申波  杨雪  周博  周洋  周静 《人工晶体学报》2017,46(10):1923-1929
采用水热法制备了不同Ag修饰量的Ag/MoO2纳米复合材料,并利用浸渍法将其负载在多孔泡沫镍(Nickel foam,NF)上制备成Ag/MoO2/NF无粘结剂型直接电极.在该电极中Ag/MoO2纳米颗粒均匀地负载在泡沫镍上形成了三维网络结构,其中MoO2纳米颗粒是由~10 nm的纳米晶组成.当Ag修饰量为5;时,Ag0.05/MoO2/NF具有最佳的电化学性能:在0.1 C的电流密度下,首次放电比容量高达1180 mAh/g,100次循环后仍保持805 mAh/g;且当电流密度由2 C降低至0.1 C时,比容量由468 mAh/g升高至820 mAh/g,表现出优异的储锂性能.  相似文献   

16.
为探究前驱粉体对Ag/AgCl电极电化学性能的影响,利用固相球磨法加入表面活性剂以及不同的干燥方法制备AgCl粉体,寻找出优化制备工艺,并制备了Ag/AgCl多孔电极。利用SEM、XRD对粉体进行微观结构分析表征,利用eDAQ电化学工作站和低噪声前置放大器噪声测试装置对电极进行电化学性能测试,讨论微观结构对电极的极化性能、短期稳定性以及电化学噪声水平的影响,并测试其外加电场响应性能。结果表明,固相球磨中加入CTAC(十六烷基三甲基氯化铵)球磨4 h并利用冷冻干燥法所制备的AgCl粉体分散性好,形貌均一,粒径1μm以下;所制备的复合Ag/AgCl电极结构呈多孔状,开孔率约32.78%;电极的交换电流密度大,约1.003 5 A·cm-2,不易极化;两电极一致性好,极差电位小,约为0.005 mV;电极具有优良的短期稳定性,电极电势波动不超过0.01 mV/24 h,在1 Hz频率处功率谱密度可低至■,为水下微弱电场探测提供了极为有利的测试基础。  相似文献   

17.
采用溶胶-凝胶法制备了Ag/Mg0.2Zn0.8O/ITO异质结,研究了溶胶浓度对Mg0.2Zn0.8O薄膜生长行为、阻变性能和疲劳特性等的影响.研究表明:Mg0.2Zn0.8O为多晶薄膜,平整致密,且随溶胶浓度的增加结晶度逐步增强,但溶胶浓度过大会导致裂纹产生.阻变行为表明,随着溶胶浓度的增加,Vsct电压逐渐升高,高阻态的阻值(RHRS)逐渐下降,低阻态的阻值(RLRS)无明显变化,RHRs/ RLRS和无疲劳循环次数逐渐降低.不同溶胶浓度所制备Ag/Mg0.2Zn0.8O/ITO异质结遵循相同的导电机制,但低压区域遵循欧姆传导机制的范围有所不同,浓度为0.3 mol/L的薄膜具有较好的综合性能,其Vset低至1.2V、无疲劳循环次数达到230次、RHRs/ RLRS大于10.  相似文献   

18.
溶胶-凝胶法制备了Ag掺杂的ZnO薄膜(AZO).采用X射线衍射(XRD)、扫描电子显微镜(SEM)、UV-VIS分光光度计、光致发光检测研究了掺杂浓度和退火温度对AZO薄膜光学和结构的影响.AZO薄膜呈(002)择优生 长的纤维锌矿六角形结构的多晶相.0.5;和1; Ag掺杂的薄膜在可见光波长区域光学透过率在70;~ 80;之间,随着Ag掺杂浓度的升高平均透过率有所降低.5; Ag掺杂的ZnO薄膜经空气中700℃退火后出现两条发射光谱带,经He气氛中退火后UV发射光谱显著增强,并且可见光发射光谱随之消失.  相似文献   

19.
本文以自制的银纳米线分散液为镀膜前驱体,利用不锈钢棒在聚对苯二甲酸乙二酯(PET)基底表面制备银纳米线薄膜电极,讨论HNO3溶液的浓度和处理时间对薄膜光电性能与表面形貌的影响.结果表明,当利用浓度为1:50(浓HNO3与蒸馏水体积比)的稀HNO3溶液处理薄膜30 min时,银纳米线薄膜的方块电阻可降低95;~97;,而薄膜的可见光透过率则提高3;~4;.  相似文献   

20.
采用磁控溅射的方法在以SrRuO3 (SRO)为底电极的(001)取向的SrTiO3基片上制备了外延BiFeO3 (BFO)薄膜,并以氧化铟锡(ITO)和金属Pt为上电极构架了ITO/BFO/SRO和Pt/BFO/SRO两种薄膜电容器,研究上电极对外延BFO薄膜铁电性和反转特性的影响.结果表明,两种薄膜电容器均体现了良好的饱和电滞回线,当测试电场为333 kV/cm时,ITO/BFO/SRO和Pt/BFO/SRO两种电容器的剩余极化强度分别为47.6 μC/cm2和56 μC/cm2,矫顽场分别为223 kV/cm和200 kV/cm.此外,两种薄膜电容器都具有良好的保持和抗疲劳特性.通过反转和非反转电流对时间的积分,可以计算出真实的极化强度.当反转电压幅值为17 V时,ITO/BFO/SRO和Pt/BFO/SRO两种电容器电流的反转时间分别为0.48 μs和0.32μs,真实极化强度的计算值约为41μC/cm2和47 μC/cm2,此计算值和铁电净极化强度的测量值符合的很好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号