首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The viscosity behavior of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), brominated polystyrene (PBrS) and their blends at several compositions (25/75, 50/50, 75/25, 85/15) has been studied. The miscibility of this polymer system was investigated on the basis of the sign of the criteria Δb, α, ΔK, μ, and Δ[η] determined by viscosity. These investigations indicate that PPO/PBrS is miscible at the compositions of (75/25), (85/15) and completely immiscible at the compositions of (25/75), (50/50) in chloroform at 20 °C. Results from viscometry match very well those of DSC results cited in the literature.  相似文献   

2.
The permeability coefficients for He, O2, N2, CH4, and CO2 in miscible blends of polystyrene (PS) and tetramethyl bisphenol-A polycarbonate (TMPC) at 35°C and 1 atm driving pressure are reported. Sorption isotherms for CO2 and CH4 are also presented. The isotherms were fitted to the dual sorption model. The Langmuir capacity factor was found to follow an earlier correlation based on unrelaxed volume. For each gas, the permeability was found to go through a minimum when plotted against blend composition. This behavior is primarily the result of the volume change on mixing observed for this system. The attractive interaction between TMPC and PS is relatively strong as indicated by density and solubility data. The value of the binary interaction parameter was found to be of the same magnitude as that for poly(phenylene oxide) (PPO)-polystyrene (PS) blends. Considering the similarity of structure between PPO and TMPC, it is concluded that similar phenyl-phenyl interactions and conformational changes on blending may prevail in TMPC/PS blends.  相似文献   

3.
Primary amine terminated polystyrene (PS-NH2), with Mn=12,000 g/mol and Mw=23,000 g/mol, was applied as a reactive compatibilizer for poly(styrene-co-maleic anhydride)/poly(phenylene oxide) (SMA/PPO) blends, in which both an impact modifier for the continuous SMA phase, viz. ABS, and the dispersed PPO phase, viz. SEBS, was incorporated. During melt blending, SMA-g-PS copolymers are generated at the interface between the SMA/ABS and the PPO/SEBS phases. The addition of 10 wt % of the reactive PS-NH2 compatibilizer to a SMA/ABS/PPO/SEBS 30/30/30/10 blend results in a more significant refinement of the dispersed PPO/SEBS particles than 10 wt % of a commercially available, bulky PS-graft-PMMA copolymer with Mn=45,300 and Mw=293,400 g/mol. In addition, PS-NH2 gives a more pronounced enhancement of the yield stress, the stress at break and the notched Izod Impact than the PS-g-PMMA. On the other hand, the elongation at break is higher in the case of the non-reactive PS-g-PMMA. It was demonstrated that surface imperfections, probably introduced by an observed strongly elastic character due to partial crosslinking of the SMA/ABS phase by difunctional H2N-PS-NH2, are responsible for the lower elongation at break for the PS-NH2 based blends.  相似文献   

4.
Polarization modulation infrared linear dichroism has been used to study the molecular orientation and relaxation of polystyrene/poly(2,6‐dimethyl 1,4‐phenylene oxide) (PS/PPO) miscible blends, containing up to 20% PPO, during and after a rapid uniaxial deformation above Tg. In general, it is found that both the PS and PPO chain orientation functions increase with stretching rate and PPO content, and decrease with temperature. For all blends investigated, between Tg + 5 and Tg + 13 °C, the relaxation occurs at the same rate for PS and PPO and, therefore, the relaxation times calculated are similar indicating, under those conditions, a strong relaxation coupling between the two polymers at both short and long times. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1405–1415, 2000  相似文献   

5.
Morphology development and growth process of spherulites in miscible poly(ethylene succinate)/poly(ethylene oxide) blends are studied by means of polarizing optical microscopy and atom force microscopy in this paper. Thin films with different film thicknesses were used to follow the growth processes of spherulites and dendrites. It is shown that, when one component spherulite grows, the other component in the melt is always excluded from the spherulite. The excluded component may reenter into the spherulite through diffusion depending on amorphous volume fraction of spherulite and segmental mobility of molecules, which leads to the occurrence of interpenetrated growth. This mechanism was analyzed in detail in this paper.  相似文献   

6.
Ultraviolet and Fourier-transform infrared spectroscopy are used to characterize the chain conformation of 2,6-dimethyl poly(phenylene oxide) (2MPPO) in compatible 2MPPO-polystyrene (PS) blends. Blending with PS increases the intramolecular energy of the 2MPPO. Atactic PS induces a greater distortion from the minimum energy conformation of 2MPPO than isotactic PS. The dispersion interaction between the phenyl ring of PS and the phenylene ring of 2MPPO is found to be quite strong. These large intermolecular forces are thought to supercede the increase in 2MPPO conformational energy and to be responsible for the blend compatibility.  相似文献   

7.
In the present work, membranes from commercially available Pebax® MH 1657 and its blends with low molecular weight poly(ethylene glycol) PEG were prepared by using a simple binary solvent (ethanol/water). Dense film membranes show excellent compatibility with PEG system up to 50 wt.% of content. Gas transport properties have been determined for four gases (H2, N2, CH4, CO2) and the obtained permeabilities were correlated with polymer properties and morphology of the membranes. The permeability of CO2 in Pebax®/PEG membrane (50 wt.% of PEG) was increased two fold regarding to the pristine Pebax®. Although CO2/N2 and CO2/CH4 selectivity remained constant, an enhancement of CO2/H2 selectivity (∼11) was observed. These results were attributed to the presence of EO units which increases CO2 permeability, and to a probable increase of fractional free-volume. Furthermore, for free-volume discussion and permeability of gases, additive and Maxwell models were used.  相似文献   

8.
The hydrocondensation of CO2 and CO with and without added MeOH, HCHO and (CH3)2CHOH has been studied on CuO/ZnO contact masses in a static reactor at different pressures and reaction times.
CO2 CO MeOH, HCHO (CH3)2CHOH CuO/ZnO .
  相似文献   

9.
通过溶液浇铸法制备了聚乳酸/聚苯乙烯共混物,以差热-热重分析研究了共混物的热氧稳定性,结果表明聚乳酸中引入聚苯乙烯,可以增强聚乳酸/聚苯乙烯共混物的热氧稳定性.采用红外光谱分析了共混物不同结构的分子链间相互作用,证实聚乳酸大分子链羰基的未共用电子对和聚苯乙烯大分子链侧基苯环的π电子形成了n-π键.  相似文献   

10.
11.
This paper discusses the gas permeation properties of poly(ethylene oxide) (PEO)-based segmented block copolymers containing monodisperse amide segments. These monodisperse segments give rise to a well phase-separated morphology, comprising a continuous PEO phase with dispersed crystallised amide segments. The influence of the polyether phase composition and of the temperature on the permeation properties of various gases (i.e., CO2, N2, He, CH4, O2 and H2) as well as on the pure gas selectivities were studied in the temperature range of −5 °C to 75 °C. The CO2 permeability increased strongly with PEO concentration, and this effect could partly be explained by the dispersed hard segment concentration and partly by the changing chain flexibility. By decreasing the PEO melting temperature the low temperature permeabilities were improved. The gas transport values were dependant on both the dispersed hard segment concentration and the polyether segment length (length between crosslinks). The gas selectivities were dependant on the polyether segment length and thus the chain flexibility.  相似文献   

12.
We present a detailed investigation of the kinetics associated with the glass transitions of miscible blends composed of atactic polystyrene (a‐PS) and poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO). According to both dynamic mechanical analysis and differential scanning calorimetry, relaxation times displayed an enhanced temperature dependence (i.e., more fragile or more cooperative behavior) for the blends compared with additive behavior based on the responses of neat a‐PS and PPO. This is consistent with the notion that specific interactions between the blend components heighten the intermolecular cooperativity. The compositional dependence of fragility provided insight into physical aging results for the properties of volume and enthalpy. The combination of our research and a previously reported pressure–volume–temperature study by Zoller and Hoehn (J Polym Sci Polym Phys Ed 1982, 20, 1385) provided evidence that the observation of increased glassy densities for the blends compared with those of the pure polymers was kinetic in origin and was not a feature of the thermodynamics of miscibility. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2118–2129, 2001  相似文献   

13.
Interfacially formed poly(N,N-dimethylaminoethyl methacrylate)/polysulfone (PDMAEMA/PSF) composite membranes were developed for CO2/N2 separation. A layer of PDMAEMA was deposited on a microporous PSF substrate by the solution coating technique, followed by crosslinking with p-xylylene dichloride (XDC) at the interface between the PDMAEMA solid layer and the crosslinking solution. The hydrophilicity and surface free energy of the membranes were analyzed by contact angle measurements with different probe liquids. The permselectivity of the membrane was shown to be affected by the PDMAEMA deposition time, interfacial crosslinking reaction time, and the PDMAEMA and XDC concentrations in the polymer coating solution and the crosslinking solution, respectively. The composite membrane showed a CO2 permeance of 85 GPU and a CO2/N2 ideal separation factor of 50 at 23 °C and 0.41 MPa of CO2 feed pressure.  相似文献   

14.
The dynamic viscosities of blends of high molecular weight, narrowmolecular-weight distributed polystyrene and poly(2, 6-dimethylphenylene ether) are studied. The zero shear viscosity ηo depends on the weight average molecular weight M̄w and on the average entanglement molecular weight M̄e in the blend according to ηo ≈︁ M̄3.4 w(blend)/M̄2.4e(blend).  相似文献   

15.
The differential orientation of polymer chains has been measured in polystyrene (PS)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) compatible blends. Density measurements are reported as a function of binary blend composition at 23°C. Drawing was performed by solid-state coextrusion. PS/PPO blend compositions of 90/10 and 75/25 were drawn within sandwiches of polyethylene at 145°C and isotactic polypropylene at 155°C, i.e. at ca. 25°C above the glass transition temperatures of the two blends. The change in Fourier-transform infrared dichroisms on drawing these blends was measured at 906 and 1190 cm?1, corresponding to predominantly PS and PPO, respectively. The orientation of PS and PPO was observed as a function of draw ratio λ in the range 1–5; orientations increased with λ for both PS and PPO in both blends but to different degrees. Both polymers decreased in orientation with increasing PPO content. Annealing with fixed ends showed that the PPO chains disorient more slowly than those of PS. All binary systems were found to be amorphous and compatible.  相似文献   

16.
《European Polymer Journal》1987,23(10):745-751
The morphology of poly(ethylene oxide)/poly(vinyl acetate) (PEO/PVAc) blends was examined using small angle X-ray scattering (SAXS) and optical microscopy. The morphological and structural parameters of the blends are dependent on both composition and crystallization conditions. Optical microscopy revealed that blend samples prepared by solution casting crystallized with volume-filling crystals up to a composition of 30/70 wt% PEO/PVAc; at higher PVAc content there was no evidence of crystallization in the temperature range studied. Pure PEO always crystallized with a spherulite-hedrite morphology. The formation of spherulites was relatively favoured at lower crystallization temperatures and by addition of PVAc to PEO. Small angle X-ray intensity profiles were analyzed using a recently developed methodology and it was found that, for a given crystallization temperature, the amorphous and interphase thicknesses increased with increasing PVAc content but that the average crystalline thickness was independent of composition. The morphological and structural properties of the PEO/PVAc blends were attributed to the presence of non-crystallizable material in both the interlamellar and interfibrillar regions.  相似文献   

17.
The phase diagram, crystallization and melting behavior of poly(ethylene oxide) (PEO)/poly(n-butyl methacrylate) (PnBMA) blends have been investigated using differential scanning calorimetry and optical microscopy. The results show that the blends are miscible up to 85 °C and show an lower critical solution temperature-type demixing at a higher temperature. The isothermal crystallization studies of the blends indicate a reduction in the overall rate of crystallization. Analysis of isothermal crystallization data by means of Avrami equation leads to average values of the Avrami index of 2.5 for pure PEO and 3.0 for the different blend compositions. The melting behavior of the blends reveals double endotherms, which is ascribed to both secondary crystallization and recrystallization. The melting point depression study yielded χ12=0, indicating a relatively low interaction strength.  相似文献   

18.
A series of silica-based organic-inorganic nanocomposites, which attempt to mimic the properties of mineralized matrix tissues from natural bone or dentin, have been prepared and characterized as potential candidates for the synthetic matrix of scaffolds for bone or dentin regeneration. The synthesis procedure consisted in the copolymerization of ethyl methacrylate (EMA) and hydroxyethyl acrylate (HEA) during the simultaneous acid-catalyzed sol-gel polymerization of tetraethoxysilane (TEOS) as a silica precursor, giving rise to poly(EMA-co-HEA)/SiO2 nanohybrids with silica contents in the range of 0-30 wt%. Different structures of silica within the organic polymeric matrix were inferred from infrared spectroscopy, energy dispersive X-ray spectroscopy, thermogravimetry, pyrolysis, density assessments, solvent uptake and transmission electron microscopy. TEOS was efficiently hydrolyzed and condensed to silica during the sol-gel process in all cases, and presented a homogeneous distribution in the polymeric matrix, in the form of nanodomains either interdispersed or continuously interpenetrated with the organic network, depending on the silica content. Silica contents above 10% produced co-continuous interpenetrated structures where the silica network reinforces mechanically the organic matrix and at the same time confers bioactivity to the surfaces.  相似文献   

19.
We report fabrication of thin (100~300 nm) poly(phenylene oxide) (PPO) films and their composites with poly (styrene) (PS) and silver (Ag) nanoparticles using a one‐step electron beam‐assisted vapor phase co‐deposition technique. Surface morphology and the structure of the deposited polymer thin film composites were characterized by FTIR, Raman, X‐ray spectroscopy, and contact angle measurements. As‐deposited PPO films and PPO/Ag composites were of porous nature and contrary to solvent casting techniques were free from nodular growth. In the case of PPO/PS thin film polymer composites, however, film morphology displayed nodular growth of PPO with nodule diameters of about ~200 nm and height of approximately 50 nm. Unique morphological changes on the porous PPO thin film surface were noticed at different Ag filling ratios. Further, the capacitance of PPO/Ag composites (<16 wt%) were measured under radio‐frequency conditions and they were functional up to 100 MHz with an average capacitance density of about 2 nF/cm2. The fabricated PPO‐based composite systems are discussed for their potential applications including embedded capacitor technology. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Water sorption and transport properties for a series of miscible blends of hydrophobic bisphenol A polysulfone and hydrophilic poly(vinyl pyrrolidone) are reported. Study was restricted to blends that remained homogeneous after exposure to liquid water. The solubility of water in the blend films increased with increasing hydrophilic polymer content. Equilibrium sorption isotherms show dual-mode behavior at low activities and swelling behavior at high activities. The sorption kinetics are generally Fickian for blends containing 20% poly(vinyl pyrrolidone) or less, but exhibit two-stage behavior in blends containing 40% poly(vinyl pyrrolidone). Diffusion coefficients extrapolated to zero concentration decrease with increasing poly(vinyl pyrrolidone) content, owing to a decrease in the fractional free volume. However, the diffusion coefficient becomes a greater function of activity as the composition of hydrophilic polymer in the blend is increased, due to plasticization of the material by large levels of sorbed water. Permeability coefficients generally decrease with increasing poly(vinyl pyrrolidone) content for blends containing 20% poly(vinyl pyrrolidone) or less because the decrease in the diffusion coefficient is greater than the increase in the solubility coefficient. Blends containing 40% poly(vinyl pyrrolidone) have permeability coefficients greater than those of polysulfone due to high water solubility. The permeability coefficients depend on water concentration in approximately the same way for all blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 655–674, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号