共查询到20条相似文献,搜索用时 62 毫秒
1.
根据染料敏化太阳电池的工作原理和结构构成,介绍了在基础实验条件下制备染料敏化太阳电池的方法.实验表明,采用天然染料敏化的TiO2半导体薄膜作为光阳极,镀碳的导电玻璃作为反电极,并选用含碘的氧化-还原电解质,通过组装能够产生一定的电能. 相似文献
2.
采用阳极氧化水解法对染料敏化纳米TiO2薄膜太阳电池的光阳极进行不同方式的电沉积优化处理.借助x射线衍射仪对处理后的样品进行分析,通过超高分辨率场发射扫描电子显微镜对导电玻璃以及电沉积处理前后纳米多孔薄膜表面进行了粒径和形貌的扫描.染料敏化太阳电池实验测试结果表明,电沉积处理和修饰后可以明显提高光生电子的收集率,增大短路电流密度,提高电池效率.
关键词:
2')" href="#">纳米TiO2
染料敏化
电沉积
太阳电池 相似文献
3.
以商用金红石相TiO2粉末为原料,通过在碱性溶液中150℃水热48h的方法合TiO2纳米管.采用SEM,TEN,XRD分析手段对TiO2纳米管的形貌和结构演变进行了表征.制成的TiO2纳米管与TritonX-100,乙酰丙酮混合后,通过丝网印刷的方法涂敷到ITO导电玻璃衬底上,并且在450℃下烧结30min后得到可应用于染料敏化太阳电池的多孔光阳极.将此光阳极浸泡于N719染料敏化后,与镀铂对电极组装电池,两者之间灌入液态电解质,电池的有效面积为0.28 cm2.在标准氙灯模拟器下(AM 1.5,100 roW/cm2)测试r电池的J-V特性,得到2.17%的光电转换效率. 相似文献
4.
在低温条件下采用定向刻蚀技术, 对金属Ti片表面用H2O2溶液进行刻蚀氧化, 制备了垂直生长的纳米TiO2叶片状阵列薄膜电极. 通过X射线衍射分析表明, 纳米TiO2叶片状阵列薄膜经500 ℃下烧结1 h后, 从无定型转变为锐钛矿相. 场发射扫描电子显微镜观察表明: 在80 ℃下的H2O2溶液刻蚀氧化, 经1 d制备得到的是Ti片表面垂直生长的叶片状阵列, 其形貌均匀且完整地
关键词:
2')" href="#">纳米TiO2
叶片状阵列电极
染料敏化太阳电池
电子传输 相似文献
5.
6.
采用溶胶-凝胶方法,在不同的实验条件下获得平均粒径从15到25nm左右的纳米TiO22颗粒.利用这些颗粒制备出的纳米多孔薄膜,应用于染料敏化纳米薄膜太阳电池. 通过x射线 衍射仪分析,得到TiO22颗粒的晶相以及晶粒度大小,用透射电子显微镜观察 了纳米TiO22颗粒的形貌和尺寸.应用于太阳电池的纳米TiO22多 孔膜,经基于布朗诺尔-埃米特-泰 勒(BET)的多层吸附理论的比表面积测试和孔径分布测试,获得了多孔膜的微
关键词:
溶胶-凝胶法
2')" href="#">纳米TiO22
染料敏化
太阳电池 相似文献
7.
以商用金红石相TiO2粉末为原料,通过在碱性溶液中150℃水热48h的方法合成TiO2纳米管.采用SEM,TEM,XRD分析手段对TiO2纳米管的形貌和结构演变进行了表征.制成的TiO2纳米管与TritonX-100,乙酰丙酮混合后,通过丝网印刷的方法涂敷到ITO导电玻璃衬底上,并且在450℃下烧结30min后得到可应用于染料敏化太阳电池的多孔光阳极.将此光阳极浸泡于N719染料敏化后,与镀铂对电极组装电池,两者之间灌
关键词:
2纳米管')" href="#">TiO2纳米管
染料敏化太阳电池
水热法 相似文献
8.
9.
10.
用溶胶-水热法制备了Sm3+掺杂的Ti O2粉体(Ti O2∶Sm3+),将其按不同质量分数掺杂到P25基体中,制备了具有下转换功能的光阳极,并将其用于染料敏化太阳能电池中,提高了电池的光电性能。荧光光谱显示,Ti O2∶Sm3+粉体可以将紫外光转换为570~700 nm的可见光。当下转换光阳极中Ti O2∶Sm3+粉体的掺杂质量分数为80%时,短路电流密度达到13.12 m A/cm2,与纯P25光阳极相比,提高了26.5%,转换效率也提高了23.5%。 相似文献
11.
空气电极/AC作载体对TiO2光催化性能的影响 总被引:2,自引:0,他引:2
研究了空气电极和活性碳 (AC)作载体对TiO2 光催化氧化活性艳红 (K 2BP)性能的影响 .实验结果表明 ,用空气电极 /AC作载体能显著提高TiO2 的光催化反应速度 ;空气电极不仅具有良好的合成H2 O2 的性能 ,而且对TiO2 光催化剂可产生大约 +0 .5V的偏压作用 ,大大减小了TiO2 光生电荷的复合几率 ;AC对有机物分子良好的吸附作用提高了有机物分子在TiO2 表面及周围的富集浓度 ,其含量在 2 1%左右可使光催化剂达到最佳的催化效果 .复合电极工作电流密度对活性艳红的氧化脱色速度有影响 ,i=15mA/cm2 ,速度达到最大 ;活性艳红分子在复合电极表面的吸附受溶液pH值的影响 ;提出了复合电极的工作原理 . 相似文献
12.
13.
采用时间分辨红外光谱直接观测了甲醇在Pt/TiO2上光催化反应制氢过程中光生电子还原氢离子生成氢气的反应过程.结果表明Pt的担载量存在一最佳值,使得该催化剂中光生电子的反应速度最快.当Pt担载量相同时,Pt/TiO2催化剂中光生电子参与产氢反应的速度随样品还原温度的不同而明显变化.可能的原因是较高温度下氢气还原的Pt/TiO2催化剂中Pt粒子占据了TiO2表面的一些能够解离吸附甲醇的活性位置,而对于较低温度下氢气还原的Pt/TiO2催化剂,这种占据作用很不明显.实验中还发现瞬态动力学研究中光生电子衰减较快 相似文献
14.
制备Cu掺杂的纳米Sn O2/Ti O2溶胶,采用旋涂法在载玻片上镀膜,经干燥、煅烧制得Cu掺杂的Sn O2/Ti O2薄膜,通过对比实验探讨掺杂比例、条件、复合形式等对结构和性能的影响。采用XRD、SEM、EDS、UVVis等测试手段对样品进行表征,并以甲基橙为探针考察了其光催化降解性能。XRD测试结果显示薄膜的晶型为锐钛矿型,结晶度较高。SEM谱图显示薄膜表面无明显开裂,粒子分布均匀,粒径约为20 nm。EDS测试结果表明薄膜材料中含有Cu元素,谱形一致。UV-Vis吸收光谱表明Cu掺杂以及Sn O2/Ti O2的复合使得在近紫外区的光吸收比纯Ti O2明显增强。光催化实验表明Cu掺杂后使得Sn O2/Ti O2复合薄膜对甲基橙的光催化降解效率进一步提高,Sn O2/Ti O2复合薄膜的光催化活性在10%Cu掺杂时达到最高。 相似文献
15.
16.
采用脉冲激光沉积技术在LaAlO_3(100)基片上制备了TiO_2薄膜,研究了氧气分压对薄膜结构、磁性与输运性质的影响.结构测量表明,TiO_2薄膜的结构与沉积过程中的氧气分压有关,氧气分压的增大有利于薄膜向锐钛矿相转变.磁性测量表明,在较高的氧气分压下制备的TiO_2薄膜表现为顺磁性,在较低氧气分压下制备的TiO_2薄膜表现出明显的室温铁磁性,其铁磁性与氧空位有密切关系.输运测量进一步表明,TiO_2薄膜表现为半导体导电特性,在具有铁磁性的薄膜中还观察到了低温磁电阻效应. 相似文献
17.
提出了一种利用离子注入和后续退火制备氮掺杂TiO2薄膜的方法。首先在室温下向石英玻璃中注入Ti离子,随后在氮气中退火到900 ℃,从而制备了氮掺杂的玻璃基TiO2薄膜。SRIM2006程序模拟和卢瑟福背散射谱(RBS)研究表明注入离子从样品表面开始呈高斯分布,实验结果和模拟结果吻合很好。X射线光电子能谱(XPS)研究结果表明注入态样品中形成了金属Ti和TiO2,900 ℃退火后金属Ti转变成TiO2,同时N原子替代少量的晶格O原子形成了O-Ti-N化合物。紫外-可见吸收光谱(UV-Vis)结果显示,当退火温度至500 ℃时,在吸收光谱中开始出现TiO2的吸收边,随退火温度升高到900 ℃,由于O-Ti-N化合物形成,TiO2的吸收边从3.98 eV红移到3.30 eV,TiO2吸收边末端延伸到可见光区,在可见光区的吸收强度明显增加。 相似文献
18.
新型复合电极对偶氮染料分子的光催化降解 总被引:2,自引:0,他引:2
介绍了具有合成H2 O2 和光催化性能的双功能新型复合电极 ,并用X射线衍射、扫描电镜等方法进行了表征 .双功能复合电极是将TiO2 光催化剂负载在活性碳 (AC)和具有合成H2 O2 性能的新型载体空气电极上形成的 .在复合电极作阴极的光反应器中 ,·OH和TiO2 光催化剂的存在实现了光化学氧化与光催化氧化在同一电极 /溶液界面上的联合作用 .实验结果表明 ,复合电极对提高偶氮染料分子活性艳红 (K 2BP)的氧化降解速度起了重要作用 ,仅反应 3min ,脱色率可达 4 9% ;反应 80min ,偶氮染料分子COD去除率可达 4 7% . 相似文献
19.
采用溶胶- 凝胶法制备了TiO2纳米晶溶胶,并以旋涂法(spin-coating)镀制了高折射率光学薄膜。借助光散射技术和透射电镜研究了溶胶的微结构。采用原子力显微镜、场发射扫描电镜、紫外-可见-近红外光谱仪、椭偏仪、漫反射吸收光谱及强激光辐照实验,对膜层的结构、光学性能及抗激光损伤性能进行了系统的表征。结果显示:纳米晶薄膜的折射率达到了1.9,而传统的溶胶-凝胶薄膜折射率只有1.6;同时纳米晶薄膜的抗激光损伤阈值与传统的溶胶-凝胶薄膜相差不大,在1 064 nm处分别为16.3 J/cm2(3 ns脉冲) 和16.6 J/cm2(3 ns脉冲);纳米晶溶胶薄膜可以在保持较高抗激光损伤阈值情况下,大幅度提高薄膜折射率。 相似文献
20.
通过理论计算和水下爆炸实验,初步研究了MgH2敏化储氢型乳化炸药的爆炸特性和爆轰反应机理。结果表明:与玻璃微球敏化的乳化炸药相比,MgH2敏化的乳化炸药水下爆炸的冲击波超压、比冲量、比冲击波能、比气泡能及水下爆炸比总能量显著增加,其中冲击波超压和水下爆炸总能量分别增加了20.5%和31.0%。MgH2储氢型乳化炸药的爆轰机理与玻璃微球敏化乳化炸药不同,MgH2在乳化炸药中起到了敏化剂和含能材料的双重作用,即MgH2在乳化基质中水解产生均匀分布的氢气泡,起到了敏化作用,同时氢气参与爆炸反应,提高了炸药的爆炸能量和做功能力。 相似文献