首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is proposed for calculating the adsorption of hydrogen in single-walled carbon nanotubes. This method involves solving the Schrödinger equation for a particle (hydrogen molecule) moving in a potential generated by the surrounding hydrogen molecules and atoms forming the wall of the carbon nanotube. The interaction potential for hydrogen molecules is taken in the form of the Silvera-Goldman empirical potential, which adequately describes the experimental data on the interaction between H2 molecules (including the van der Waals interaction). The interaction of hydrogen molecules with carbon atoms is included in the calculation through the Lennard-Jones potential. The free energy at a nonzero temperature is calculated with allowance made for the phonon contribution, which, in turn, makes it possible to take into account the correlations in the mutual arrangement of the neighboring molecules. The dependences of the total energy, the free energy, and the Gibbs thermodynamic potential on the applied pressure P and temperature T are calculated for adsorbed hydrogen molecules. These dependences are obtained for the first time with due regard for the quantum effects. The pressure and temperature dependences of the hydrogen density m(P, T) are also constructed for the first time.  相似文献   

2.
The adsorption of single gallium atoms on the inner walls of single-walled carbon nanotubes with hydrogen/oxygen-saturated monovacancies are studied by using the density functional theory method. When the monovacancy is saturated by the hydrogen or oxygen atom, the gallium atom prefers to adsorb on the top of the center of a pentagon ring, and the binding energy between the gallium atom and carbon nanotube is significantly lower as compared to the case with a pure monovacancy. In addition, the results of the density of states show that the states originating from the adsorbed gallium atoms shift toward lower energy when the carbon atoms with dangling bonds are saturated by hydrogen or oxygen atoms. Meanwhile, these states have no contribution to the states near the Fermi levels.  相似文献   

3.
The behaviour of methane molecules inside carbon nanotubes at room temperature is studied using classical molecular dynamics simulations. A methane molecule is represented either by a shapeless super-atom or by a rigid set of five interaction centres localized on atoms. Different loadings of methane molecules ranging from the dense gas density to the liquid density, and the influence of flexibility of the CNT on structural and dynamic properties of confined molecules are considered. The simulation results show the decreases of the diffusion coefficient of methane molecules with density. At higher densities diffusion coefficient values are almost independent of molecular shape, but at low densities one observes faster motion of the super-atom molecule than that for the tetrahedral model of the molecule. For loadings of methane considered here the nanotube flexibility, introduced by the reactive empirical bond order (REBO) potential for interactions between carbon atoms of nanotube, does not have an effect on diffusivity of methane molecules, and its impact on the molecular structure is weak. It is found that methane molecules in the vicinity of the nanotube wall show tripod orientation with respect to the nanotube surface.  相似文献   

4.
Methane gas (CH4) is a chemical compound comprising a carbon atom surrounded by four hydrogen atoms, and carbon nanotubes have been proposed as possible molecular containers for the storage of such gases. In this paper, we investigate the interaction energy between a CH4 molecule and a carbon nanotube using two different models for the CH4 molecule, the first discrete and the second continuous. In the first model, we consider the total interaction as the sum of the individual interactions between each atom of the molecule and the nanotube. We first determine the interaction energy by assuming that the carbon atom and one of the hydrogen atoms lie on the axis of the tube with the other three hydrogen atoms offset from the axis. Symmetry is assumed with regard to the arrangement of the three hydrogen atoms surrounding the carbon atom on the axis. We then rotate the atomic position into 100 discrete orientations and determine the average interaction energy from all orientations. In the second model, we approximate the CH4 molecule by assuming that the four hydrogen atoms are smeared over a spherical surface of a certain radius with the carbon atom located at the center of the sphere. The total interaction energy between the CH4 molecule and the carbon nanotube for this model is calculated as the sum of the individual interaction energies between both the carbon atom and the spherical surface and the carbon nanotube. These models are analyzed to determine the dimensions of the particular nanotubes which will readily suck-up CH4 molecules. Our results determine the minimum and maximum interaction energies required for CH4 encapsulation in different tube sizes, and establish the second model of the CH4 molecule as a simple and elegant model which might be exploited for other problems.  相似文献   

5.
The channeling of hydrogen atoms in bundles of carbon nanotubes in the presence of vacancies on walls and adsorbed atoms inside the tubes is studied by means of computer simulation. A change in the parameters of the beam of channeling particles during interaction with the indicated defects makes it possible to detect the structural damage of nanotube bundles.  相似文献   

6.
基于第一性原理深入研究了碱金属原子(Li,Na,K)修饰的多孔石墨烯(PG)体系的储氢性能,并且通过从头算分子动力学模拟了温度对Li-PG吸附的H2分子稳定性的影响.研究结果表明,PG结构的碳环中心是碱金属原子最稳定的吸附位置,PG单胞最多可以吸附4个碱金属原子,Li原子被束缚最强,金属原子间无团聚的倾向;H2分子通过极化机制吸附在碱金属修饰的PG结构上,每个金属原子周围最多可以稳定地吸附3个H2分子;Li-PG对H2分子的吸附最强(平均吸附能为-0.246 eV/H2),Na-PG对H2分子的吸附较弱(平均吸附能为-0.129 eV/H2),K-PG对H2分子的吸附最弱(平均吸附能为-0.056 eV/H2),不适合用做储氢材料;在不考虑外界压强且温度为300 K的情况下,Li-PG结构可稳定地吸附9个H2分子,储氢量为9.25 wt.%;在400 K时,有7个吸附H2分子脱离Li-PG的束缚,在600-700 K的范围内,吸附H2分子全部脱离了Li-PG体系的束缚.  相似文献   

7.
祁鹏堂  陈宏善 《物理学报》2015,64(23):238102-238102
利用密度泛函理论研究了Li原子修饰的C24团簇的储氢性能. Li原子在C24团簇表面的最佳结合位是五元环. Li原子与C24团簇之间的作用强于Li原子之间的相互作用, 能阻止它们在团簇表面发生聚集. 当Li原子结合到C24表面时, 它们向C原子转移电子后带正电荷. 当氢分子接近这些Li原子时, 在电场作用下发生极化, 通过静电相互作用吸附在Li原子周围. 在Li修饰的C24复合物中, 每个Li原子能吸附两到三个氢分子, 平均吸附能处于0.08到0.13 eV/H2范围内. C24Li6能吸附12个氢分子, 储氢密度达到6.8 wt%.  相似文献   

8.
刘莎  吴锋民  滕波涛  杨培芳 《物理学报》2011,60(8):87102-087102
碳纳米管曲率与卷曲方式是同时存在并影响金属原子在碳纳米管内外吸附行为的重要因素, 单独研究卷曲方式对金属吸附行为的影响较困难. 选取曲率相近、卷曲方式不同的扶手椅型(6, 6)、锯齿型(10, 0)与手性(8, 4)单壁碳纳米管(SWCNT), 利用密度泛函理论研究了Rh原子在SWCNT内外的吸附行为. 构型优化表明:由于SWCNT卷曲方式不同, 导致Rh原子在(6, 6),(10, 0)与(8, 4)SWCNT内外吸附的稳定构型不同; 不同卷曲方式亦使SWCNT与Rh原子相互作用的C原子不同, 导致Rh 关键词: 密度泛函理论 单壁碳纳米管 Rh原子 卷曲方式  相似文献   

9.
Carbon monolayer nanotubes filled with K, Rb, and Cs atoms, in which every ten carbon atoms captures an electron from the doping atoms, are considered. It is assumed that a positive charge in the bulk of the nanotube and a negative charge on its surface are distributed uniformly so that the potential energy of a conduction electron inside the nanotube is proportional to the square of the distance to its center. The dependences of the Fermi quasi-momentum for conduction electrons inside the nanotube on their volume density and the tube radius are obtained in the one-electron approximation for an arbitrary number of subbands of transverse motion. The Landauer formula is used for calculating the dependence of the conductivity of the metallic subsystem of the nanotube on its radius.  相似文献   

10.
The capacity of Li and Na co-decorated carbon nitride nanotube (CNNT) for hydrogen storage is studied using first-principles density functional theory. The results show that with two H2 molecules attached to per Li and four H2 molecules per Na the Li and Na co-decorated CNNT gains a gravimetric density of H2 as high as 9.09 wt% via electrostatic interaction without the clustering of the deposited metal atoms (at T=0 K). The average adsorption energy of hydrogen molecule is in the range of 0.09-0.22 eV/H2, which is suitable for practical hydrogen storage at ambient temperatures.  相似文献   

11.
周晓艳  陆杭军 《中国物理》2007,16(2):335-339
In this paper we present some simulation results about the behaviour of water molecules inside a single wall carbon nanotube (SWNT). We find that the confinement of water in an SWNT can induce a wave-like pattern distribution along the channel axis, similar phenomena are also observed in biological water channels. Carbon nanotubes(CNTs) can serve as simple nonpolar water channels. Molecular transport through narrow CNTs is highly collective because of tight hydrogen bonds in the protective environment of the pore. The hydrogen bond net is important for proton and other signal transports. The average dipoles of water molecules inside CNTs (7,7), (8,8) and (9,9) are discussed in detail. Simulation results indicate that the states of dipole are affected by the diameter of SWNT. The number of hydrogen bonds, the water--water interaction and water--CNT interaction are also studied in this paper.  相似文献   

12.
张变霞  杨春  冯玉芳  余毅 《物理学报》2009,58(6):4066-4071
采用密度泛函方法对铜原子在有限长(5,5)椅型单壁碳纳米管的吸附行为进行了研究.计算结果表明,铜原子吸附在管外壁要比吸附在管内壁能量上更为有利,在管外壁碳原子顶位吸附最佳,属于明显的化学吸附.且用前线轨道理论对其成键特性进行了分析,表明在顶位吸附时主要由铜原子的4s轨道电子与碳纳米管中耦合的σ-π键形成新的σ键.此外还对比计算了两种典型位置电子密度,发现顶位吸附的成键中有更大的电子云重叠.进一步表明在某些情况下铜碳原子可以成键. 关键词: 碳纳米管 铜原子 成键特性  相似文献   

13.
范冰冰  王利娜  温合静  关莉  王海龙  张锐 《物理学报》2011,60(1):12101-012101
本文采用第一性原理的密度泛函理论,主要以(6,6)Armchair型,(11,0)Zigzag型单壁碳纳米管为研究对象,研究了水分子链在碳纳米管内部吸附的稳定结构,以及结合能随其结构的变化.结果表明:当水分子链受限于碳纳米管内部时,引起碳纳米管直径收缩,这主要是由于水分子链与碳纳米管之间的氢键作用以及范德华弱相互作用所引起的.随着碳纳米管半径的增加,两种单体之间的结合能逐渐减小,但当碳纳米管半径增加至6.78时,其结合能又有所增加,这是由于在优化过程中,水分子链单体之间的氢键作用大于水分子链与碳纳米管之 关键词: 水分子链/单壁碳纳米管 密度泛函理论 结构稳定性  相似文献   

14.
提出碱金属钠原子修饰笼形Si_6团簇的结构模型,采用密度泛函理论(DFT)研究钠原子修饰笼形Si_6团簇的结构及储氢性能.研究结果表明,氢分子与笼形Si_6团簇表面相互作用很弱,氢分子在其表面容易脱附.采用钠原子修饰笼形Si_6团簇后可有效避免氢分子的脱附,并且钠原子在笼形Si_6团簇的表面不发生团聚,有利于氢分子在其表面吸附和循环利用.研究发现在两个钠原子修饰笼形Si_6团簇的结构中,每个钠原子可以有效吸附六个氢分子.计算得到Na2Si_6团簇结构储氢的质量分数高达10.08 wt%,且氢分子的平均吸附能约为0.837 kcal/mol.可见,实现钠原子修饰笼形Si_6团簇结构在常温常压条件下储氢是有可能的.  相似文献   

15.
The adsorption of hydrogen molecules on titanium-decorated (Ti-decorated) single-layer and bilayer graphenes is studied using density functional theory (DFT) with the relativistic effect. Both the local density approximation (LDA) and the generalized gradient approximation (GGA) are used for obtaining the region of the adsorption energy of H2 molecules on Ti-decorated graphene. We find that a graphene layer with titanium (Ti) atoms adsorbed on both sides can store hydrogen up to 9.51 wt% with average adsorption energy in a range from -0.170 eV to 0.518 eV. Based on the adsorption energy criterion, we find that chemisorption is predominant for H2 molecules when the concentration of H2 molecules absorbed is low while physisorption is predominant when the concentration is high. The computation results for the bilayer graphene decorated with Ti atoms show that the lower carbon layer makes no contribution to hydrogen adsorption.  相似文献   

16.
By adopting the empirical interaction potential between hydrogen and metal atoms determined in our previous paper, calculations have been performed of the 2T configuration, in which two neighboring tetrahedral (T) sites are equally shared by a hydrogen (H) atom. The tunneling matrix element J and the activation energy are estimated by calculating the excitation energy of the H atom for the 2T state and the energy difference between the 2T and 1T state, respectively.From these calculations, it is suggested that H atoms in V and Fe migrate between the ground states of neighboring T sites by adiabatic transitions, whereas in the lower temperature region in Ta by non-adiabatic tunneling process.  相似文献   

17.
Wu-Jun Shi  Shi-Jie Xiong 《Surface science》2010,604(21-22):1987-1995
Water molecule adsorption on TiO2-terminated (100) surface of SrTiO3 with and without Cr doping is investigated by first principle calculation based on density functional theory. The band gap is shrunk compared with that of bulk due to the existence of defect states on the surface and 3d states of dopants. As a result the absorption energy edge is reduced and locates in the visible region. When adsorbed on the surface, energy levels of water molecules as a whole are lowered with respect to the Fermi energy, but the higher levels are split and electrons are transferred from low levels to high levels due to the decrease of the density of states in low energy region. Weak bonding is formed between water hydrogen atoms and surface oxygen atoms. This bonding causes the electron transferring from substrate to molecule and the occupation of the corresponding states.  相似文献   

18.
周晓锋  方浩宇  唐春梅 《物理学报》2019,68(5):53601-053601
本文使用密度泛函理论中的广义梯度近似对扩展三明治结构graphene-2Li-graphene的几何结构、电子性质和储氢性能进行计算研究.计算得知:位于单层石墨烯中六元环面心位上方的单个Li原子与基底之间的结合能最大(1.19 eV),但小于固体Li的实验内聚能(1.63 eV),然而,在双层石墨烯之间的单个Li原子与基底的结合能增加到3.41 eV,远大于固体Li的实验内聚能,因此位于双层石墨烯之间的多个Li原子不会成簇,有利于进一步储氢.扩展三明治结构graphene-2Li-graphene中每个Li原子最多可以吸附3个H_2分子,储氢密度高达10.20 wt.%,超过美国能源部制定的5.5 wt.%的目标.该体系对1—3个H_2分子的平均吸附能分别为0.37,0.17和0.12 eV,介于物理吸附和化学吸附(0.1—0.8 eV)之间,因此该体系可以实现常温常压下对H_2的可逆吸附.通过对态密度分析可知,每个Li原子主要通过电场极化作用吸附多个H_2分子.动力学和巨配分函数计算表明graphene-2Li-graphene结构对H_2分子具有良好的可逆吸附性能.该研究可以为开发良好的储氢材料提供一个好的研究思路,为实验工作提供理论依据.  相似文献   

19.
The effect of gas molecule adsorption is investigated on the density of states of (9,0) zigzag boron nitride nanotube within a random tight-binding Hamiltonian model. The Green function approach and coherent potential approximation have been implemented. The results show that the adsorption of carbon dioxide gas molecules by boron atoms only leads to a donor type semiconductor while the adsorption by nitrogen atoms only leads to an acceptor. Since the gas molecules are adsorbed by both boron and nitrogen atoms, a reduction of the band gap is found. In all cases, increasing the gas concentration causes an increase in the height of the peaks in the band gap. This is due to an increasing charge carrier concentration induced by adsorbed gas molecules.  相似文献   

20.
Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest. The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement. The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate. There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs, which are not stable on graphite. The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号