首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The nanoparticle microreactor (NPMR) is a new concept that we have introduced to describe a very small-scale system capable of converting an aerosol precursor to solid particles. The liquid precursor of about 1 µl is injected by a syringe through a septum into a tubular evaporator of 1.0 cm3 in volume with stopcocks at both ends. The evaporator has been preheated by a heating tape to a temperature sufficiently high for vaporization to occur in half a minute. By opening the stopcocks, the vaporized precursor is transported by a carrier gas stream into a quartz tube which is mounted along the axis of a tubular furnace. The nanoparticle aggregates produced in the reactor are sampled by deposition on an electron micrograph grid at the reactor exit. The NPMR was applied first to the synthesis of TiO2 particles by thermal decomposition of titanium tetraisopropoxide (TTIP) in a nitrogen carrier gas, with TTIP concentrations varying from 1.0 to 7.0 mol% or 2.35×10–6 to 1.65×10–5 in TiO2 volume loading, and decomposition temperatures from 300°C to 1000°C. Studies were made with a 2 mm reaction tube and a 4 mm tube with sheath gas. With the 2 mm tube, a considerable fraction of the TTIP precursor was consumed at the wall by surface reaction, resulting in very small particles. With the 4 mm tube, the primary particle size was comparable to that reported in the literature for steady flow experiments using a 22.2 mm tube. Primary particle sizes ranged from 200 to 400 nm. Depending on TTIP concentration and reactor temperature, the particles exhibited a bimodal size distribution, probably due to a two-stage nucleation. A fourfold increase in the gas flow rate had little effect on particle size, indicating that particle growth ended early, within one-fourth the tube length. Residence time in the reactor was between 0.35 and 1.4 s, and total run time about 1 min. The NPMR has potential for rapid assembly of large databases and is adaptable to combinatorial discovery of nanoparticles with novel properties. Design requirements for an ideal aerosol microreactor are discussed briefly.  相似文献   

2.
Zinc oxide (ZnO) and alumina (Al2O3) particles are synthesized by the combustion of their volatilized acetylacetonate precursors in a premixed air–methane flame reactor. The particles are characterized by XRD, transmission electron microscopy, scanning mobility particle sizing and by measurement of the BET specific surface area. Pure (-)alumina particles appear as dendritic aggregates with average mobile diameter 43–93 nm consisting of partly sintered, crystalline primary particles with diameter 7.1–8.8 nm and specific surface area 184–229 m2/g. Pure zinc oxide yields compact, crystalline particles with diameter 25–40 nm and specific surface area 27–43 m2/g. The crystallite size for both oxides, estimated from the XRD line broadening, is comparable to or slightly smaller than the primary particle diameter. The specific surface area increases and the primary particle size decreases with a decreasing flame temperature and a decreasing precursor vapour pressure. The combustion of precursor mixtures leads to composite particles consisting of zinc aluminate ZnAl2O4 intermixed with either ZnO or Al2O3 phases. The zinc aluminate particles are dendritic aggregates, resembling the alumina particles, and are evidently synthesized to the full extent allowed by the overall precursor composition. The addition of even small amounts of alumina to ZnO increases the specific surface area of the composites significantly, for example, zinc aluminate particles increases to approximately 150 m2/g. The gas-to-particle conversion is initiated by the fast nucleation of Al2O3 or ZnAl2O3, succeeded by a more gradual condensation of the excess ZnO with a rate probably controlled by the cooling rate for the flame.  相似文献   

3.
Nano-sized antimony-doped tin oxide (ATO) particles were synthesized using DC arc plasma jet. The precursors SnCl4 and SbCl5 were injected into the plasma flame in the vapor phase. ATO powder could conveniently be synthesized without any other post-treatment in this study. To control the doping amount of antimony in the ATO particles, the Sb/Sn molar ratio was used as an operating variable. To study the effect of carrier gas on the particle size, argon and oxygen gases were used. The results of XRD and TGA show that all Sb ions penetrated the SnO2 lattice to substitute Sn ions. With the increased SbCl5 concentration in source material, the Sb doping level was also increased. The size of the particles synthesized using the argon carrier gas was much smaller than that of the particles prepared using the oxygen carrier gas. For the argon gas, PSA results and SEM images reveal that the average particle size was 19 nm. However, for the oxygen gas, the average particle size was 31 nm.  相似文献   

4.
We have investigated the development of crystal morphology and phase in ultrafine titanium dioxide particles. The particles were produced by a droplet-to-particle method starting from propanolic titanium tetraisopropoxide solution, and calcined in a vertical aerosol reactor in air. Mobility size classified 40-nm diameter particles were conveyed to the aerosol reactor to investigate particle size changes at 20–1200°C with 5–1-s residence time. In addition, polydisperse particles were used to study morphology and phase formation by electron microscopy. According to differential mobility analysis, the particle diameter was reduced to 21–23-nm at 600°C and above. Precursor decomposition occurred between 20°C and 500°C. The increased mobility particle size at 700°C and above was observed to coincide with irregular particles at 700°C and 800°C and faceted particles between 900°C and 1200°C, according to transmission electron microscopy. The faceted anatase particles were observed to approach a minimized surface energy by forming {101} and {001} crystallographic surfaces. Anatase phase was observed at 500–1200°C and above 600°C the particles were single crystals. Indications of minor rutile formation were observed at 1200°C. The relatively stable anatase phase vs. temperature is attributed to the defect free structure of the observed particles and a lack of crystal–crystal attachment points.  相似文献   

5.
A new method is proposed to fabricate nanocrystalline titania (TiO2) films of controlled crystalline size and film thickness. The method uses the laminar, premixed, stagnation flame approach, combining particle synthesis and film deposition in a single step. A rotating disc serves as a combination of substrate-holder and stagnation-surface that stabilizes the flame. Disc rotation repetitively passes the substrates over a thin-sheet, fuel-lean ethylene–oxygen–argon flame doped with titanium tetraisopropoxide. Convective cooling of the back side of the disc keeps the substrate well below the flame temperature, allowing thermophoretic forces to deposit a uniform film of particles that are nucleated and grown via the flame stabilized just below the surface. The particle film grows typically at 1 μm/s. The film is made of narrowly distributed, crystalline TiO2 several nanometers in diameter and forms with a 90% porosity. Analysis shows that the rotation of the stagnation-surface does not reduce the stability of a stagnation flame, nor does it affect the fundamental chemistry of particle nucleation and growth that occurs between the flame and the stagnation surface.  相似文献   

6.
Kim  H.J.  Jeong  J.I.  Park  Y.  Yoon  Y.  Choi  M. 《Journal of nanoparticle research》2003,5(3-4):237-246
Generation and growth of polydisperse non-spherical silica nanoparticles in an oxy-hydrogen co-flow diffusion flame have been simulated for the first time. A complete set of Navier–Stokes equations describing multi-component chemically-reacting fluid flows was first solved considering the detailed H2/O2 chemistry and oxidation/hydrolysis reactions of SiCl4. A recently developed aggregate sectional model (Jeong & Choi, 2001) was employed to solve the dynamics of particles undergoing generation, convection, diffusion, coagulation and coalescence in a spatially two-dimensional flame system. Non-uniform spatial distributions of flame temperatures and non-spherical particle sizes were successfully simulated. Comparison on flame temperature and particle size between the numerical simulation and the experimental data has also been done. Performance of a simple monodisperse model was also studied by comparing with the detailed sectional model.  相似文献   

7.
Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite αFe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6–12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50–60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50–60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the outer annulus along with the CH4 in the inverse diffusion flame configuration. When particles were synthesized in the presence of the TTIP additive, larger monodispersed individual particles (50–90 nm) were synthesized as observed by TEM. In this article, we show that iron oxide nanoparticles of varied morphology, composition, and size can be synthesized and controlled by varying flame configuration, flame temperature, and additive loading.  相似文献   

8.
SnO2/TiO2 mixed oxides with primary particle size ranging between 5 nm dp 12 nm were synthesized by doping a H2/O2/Ar flame with Sn(CH3)4 and Ti(OC3H7)4 co-currently. The effects of “flow coordinate,” concentration and flame configurations were investigated with respect to particle size and morphology of the generated mixed oxides. In situ characterization of the mixed oxides was performed using the particle mass spectrometer (PMS), while XRD, TEM, BET and UV–Vis were performed ex situ. Results obtained showed that primary particle size of mixed oxides can be controlled by varying experimental parameters. The mixed oxides have interesting properties compared to those of the pure oxides of TiO2 and SnO2, which were also synthesized in flames earlier. Band gap tuning opportunities are possible using mixed oxides.  相似文献   

9.
The properties of TiO2 nanoparticles synthesized using the flame stabilized on a rotating surface method (FSRS) are investigated. The method uses a laminar, premixed, stagnation flame, combining particle synthesis and film deposition in a single step. The current study examines the effects of flame properties on particle characteristics. Synthesized particles were characterized using X-ray diffractometry, Transmission Electron Microscopy and UV–vis spectrometry in order to quantify the effects of equivalence ratio and precursor loading on particle size, crystallinity and optical band-gap. Results show that flame stoichiometry significantly affects crystal phase, but it has little to no effect on particle size and light absorption band edge. In addition, precursor loading impacts both the particle size and the crystal phase. The study demonstrates the potential of the FSRS method for producing tailored nanoscale TiO2 particles for a variety of applications.  相似文献   

10.
Thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out in varying reaction atmospheres: nitrogen, oxygen, and nitrogen plus water vapor. The effect of reaction atmosphere on the morphology, size, and crystalline structure of produced TiO2 particles was studied. The reactor used was similar to the microreactor proposed earlier by Park et al. (2001, J. Nanopart. Res., 3, 309–319), but for a modification in the precursor evaporator. The reactor temperature was varied from 300 to 700°C and the TTIP concentration in the evaporator from 1.0 to 7.0 mol%, holding the reactor residence time at 0.7 s. The primary-particle size was in the range 25–250 nm, varying with operating condition. The crystalline structure was amorphous in nitrogen, a mixture of rutile and anatase in nitrogen plus water vapor, and anatase in oxygen atmospheres. In nitrogen, agglomerates composed of very small particles whose individual boundaries are not clearly distinguished were produced. In oxygen, the particles composing an agglomerate became larger and were clearly spherical. As the atmosphere was varied to the nitrogen plus water vapor, the particle size increased further. The variation of primary particle size with reaction atmosphere was discussed in comparison with previous experimental data.  相似文献   

11.
Homogeneous ZnO Nanoparticles by Flame Spray Pyrolysis   总被引:2,自引:0,他引:2  
Zinc oxide (ZnO) nanoparticles were made by flame spray pyrolysis (FSP) of zinc acrylate–methanol–acetic acid solution. The effect of solution feed rate on particle specific surface area (SSA) and crystalline size was examined. The average primary particle diameter can be controlled from 10 to 20nm by the solution feed rate. All powders were crystalline zincite. The primary particle diameter observed by transmission electron microscopy (TEM) was in agreement with the equivalent average primary particle diameter calculated from the SSA as well as with the crystalline size calculated from the X-ray diffraction (XRD) patterns for all powders, indicating that the primary particles were rather uniform in diameter and single crystals. Increasing the solution feed rate increases the flame height, and therefore coalescence and/or surface growth was enhanced, resulting in larger primary particles. Compared with ZnO nanoparticles made by other processes, the FSP-made powder exhibits some of the smallest and most homogeneous primary particles. Furthermore, the FSP-made powder has comparable BET equivalent primary particle diameter with but higher crystallinity than sol–gel derived ZnO powders.  相似文献   

12.
Min Zeng 《Applied Surface Science》2011,257(15):6636-6643
Well-crystallized cubic phase BaTiO3 particles were prepared by heating the mixture of barium hydroxide aqueous solution and titania derived from the hydrolysis of titanium isopropoxide (TTIP) at 328 K, 348 K or 368 K for 24 h. The morphology and size of obtained particles depended on the reaction temperature and the Ba(OH)2/TTIP molar ratio. By the direct hydrolytic reaction of titanium tetraisopropoxide, the high surface area titania (TiO2) was obtained. The surface adsorption characteristics of the titania particles had been studied with different electric charges OH ions or H+ ions. The formation mechanism and kinetics of BaTiO3 were examined by measuring the concentration of [Ba2+] ions in the solution during the heating process. The experimental results showed that the heterogeneous nucleation of BaTiO3 occurred on the titania surface, according to the Avrami's equation.  相似文献   

13.
Bimodally porous (2–4 and 20–100 nm) titania powders were prepared by hydrolysis of titanium tetraisopropoxide (TTIP), and the effect of hydrolysis temperature on the phase transformation and pore structure was investigated. The phase transformation was slightly retarded with increasing hydrolysis temperature, when the initial water concentration was small. The evolution of particle phase composition from amorphous to crystalline anatase and rutile was largely proportional to the calcination temperature and the initial water concentration. The pore size distribution was bimodal with fine intra-particle pores (2–4 nm in diameter) and larger inter-particle pores (20–100 nm). The intra-particle pores decreased in diameter at the hydrolysis temperature of 20°C. The specific surface area (SSA) of the dried powders ranged from 253 to 587 m2/g and the highest SSA was obtained at the hydrolysis temperature of 20°C.  相似文献   

14.
Titanium dioxide (TiO2) nanoparticles were prepared by the oxidation of titanium tetrachloride (TiCl4) in a diffusion flame reactor. The average diameter of particles was 15–30 nm and mass fraction of anatase ranged from 40% to 80%. Effects of particle size and phase composition of those TiO2 nanoparticles on photocatalytic properties such as decomposition of methylene blue, bacteria and ammonia gas were investigated. The degree of decomposition of methylene blue by the TiO2 nanoparticles under the illumination of the black light was directly proportional to the anatase mass fraction, but inversely to the particle size. The decomposition of bacteria and ammonia gas by the TiO2 nanoparticles under the illumination of the fluorescent light showed the same trend as in the case of the methylene blue.  相似文献   

15.
Modes of particle combustion in iron dust flames   总被引:1,自引:0,他引:1  
The so-called argon/helium test is proposed to identify the combustion mode of particles in iron dust flames. Iron powders of different particle sizes varying from 3 to 34 μm were dispersed in simulated air compositions where nitrogen was replaced by argon and helium. Due to the independence of the particle burning rate on the oxygen diffusivity in the kinetic mode, the ratio between the flame speeds in helium and argon mixtures is expected to be smaller if the particle burning rate is controlled by reaction kinetics rather than oxygen diffusion. Experiments were performed in a reduced-gravity environment on a parabolic flight aircraft to prevent particle settling and buoyancy-driven disruption of the flame. Uniform suspensions of the iron powders were produced inside glass tubes and a flame was initiated at the open end of the tube. Quenching plate assemblies of various channel widths were installed inside the tube and pass or quench events were used to measure the quenching distance. Flame propagation was recorded by a high-speed digital camera and spectral measurements were used to determine the temperature of the condensed emitters in the flame. The measured flame speeds and quenching distances were in good agreement with previously developed one-dimensional, dust flame model where the particles are assumed to burn in a diffusive mode and heat losses are described on a volumetric basis. However, a significant drop of the ratio of flame speeds in helium and argon mixtures was observed for finer 3 μm particles and was attributed to a transition from the combustion controlled by diffusion for larger particles to kinetically controlled burning of micron-size particles. In helium mixtures, the lower flame temperatures measured in suspensions of fine particles in comparison to larger particles reinforces this assumption.  相似文献   

16.
N-doped titania was prepared continuously by one-step synthetic method under supercritical and subcritical water conditions using titanium(IV)tetraisopropoxide (TTIP) and nitric acid as a titania precursor and nitrogen source, respectively. The synthesized N-doped titania particles were characterized by XRD, N2-adsorption, TEM, XPS, UV-vis diffuse reflectance spectroscopy. N-doped titania was successfully synthesized and its crystalline structure was homogenous anatase phase with high surface area. The absorption edge of synthesized N-doped titania shifted into the visible light region compared with commercial titania P25. All synthesized N-doped titania have higher photocatalytic activity than P25 under visible light irradiation. The photocatalytic activity of N-doped titania synthesized under supercritical water condition was the highest for the degradation of methyl orange under visible light due to the larger crystallite size compared with the N-doped titania synthesized under subcritical water condition.  相似文献   

17.
Choi  M.  Cho  J.  Lee  J.  Kim  H.W. 《Journal of nanoparticle research》1999,1(2):169-183
The evolution of silica aggregate particles in a coflow diffusion flame has been studied experimentally using light scattering and thermophoretic sampling techniques. An attempt has been made to calculate the aggregate number density and volume fraction using the measurements of scattering cross section from 90° light scattering with combination of measuring the particle size and morphology from the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh–Debye–Gans and Mie theory for fractal aggregates and spherical particles, respectively. Using this technique, the effects of H2 flow rates on the evolution of silica aggregate particles have been studied in a coflow diffusion flame burner. As the flow rate of H2 increases, the primary particle diameters of silica aggregates have been first decreased, but, further increase of H2 flow rate causes the diameter of primary particles to increase and for sufficiently larger flow rates, the fractal aggregates finally become spherical particles. For the cases of high flame temperatures, the particle sizes become larger and the number densities decrease by coagulation as the particles move up within the flame. For cases of low flame temperatures, the primary particle diameters of aggregates vary a little following the centerline of burner and for the case of the lowest flame temperature in the present experiments, the sizes of primary particles even decrease as particles move upward.  相似文献   

18.
A core-shell nanocomposite (CdS/TiO(2)) was synthesized at relatively low temperature (70°C) with small particle sizes (~11 nm). First, CdS nanoparticles were prepared by a combination of ultrasound and new micro-emulsion (O/W) without surfactant. Then the synthesized CdS was easily combined with TiO(2) under sonication. The formation of uniform surface layer of TiO(2) with depths of 0.75-1.1 nm on the CdS led to an increase of particle size. Ultrasonic irradiation can control the hydrolysis and condensation of titanium tetra-isopropoxide (TTIP) and the formation of TiO(2) shell around the CdS core. This technique avoids some of the problems that exist in conventional microemulsion synthesis such as the presence of different additives and calcinations. It was found that nanocomposite particles extend the optical absorption spectrum into the visible region in comparison with pure TiO(2) and pure CdS. In addition, a larger depth of TiO(2) led to a red-shift of the absorption band in nanocomposite. The characterization of nanocomposites has been studied by HRTEM, TEM, XRD, EDAX, BET and, UV-vis.  相似文献   

19.
Titania/Hyperbranched polyglycidol (HBP) nanohybrids with tunable morphologies have been synthesized via a sol–gel process at ambient temperature. One-shot addition of varied amounts of titanium precursor tetraisopropoxide (TTIP) yields spherical titania/HBP solid particles with tunable size, while a controlled addition of TTIP results in spherical titania/HBP capsules. The average outer and inner diameters of the resultant capsules are also controllable according to the amount of TTIP via an Oswald ripening process. In addition, the modality of additional water supplied in the reaction systems can tune the morphologies of the resulting titania/HBP particles from nanocapsules to nanotubes owing to the accelerated hydrolysis rate of TTIP. The tunability in morphologies of the titania/HBP nanostructures ranging from solid spheres, capsules to tubes could be attributed to the self-assembly of a large amount of titania/HBP aggregates in a rapid, controlled and anisotropic manner, respectively. Surprisingly, by means of HBP contained in the resulting titania/HBP nanostructures, the gold nanoparticles are in situ generated and encapsulated into titania/HBP matrix in the absence of additional reducing agent. The as-prepared gold nanoparticles functionalized titania/HBP hybrids exhibit excellent catalytic function toward the reduction of 4-nitrophenol. This strategy demonstrates a typical example for functionalizing the titania/HBP hybrids targeted to specific applications.  相似文献   

20.
Ahn  K.H.  Jung  C.H.  Choi  M.  Lee  J.S. 《Journal of nanoparticle research》2001,3(2-3):161-170
Growth characteristics of silica particles have been studied experimentally using in situ particle sampling technique from H2/O2/Tetraethylorthosilicate (TEOS) diffusion flame with carefully devised sampling probe. The particle morphology and the size comparisons are made between the particles sampled by the local thermophoretic method from the inside of the flame and by the electrostatic collector sampling method after the dilution sampling probe. The Transmission Electron Microscope (TEM) image processed data of these two sampling techniques are compared with Scanning Mobility Particle Sizer (SMPS) measurement. TEM image analysis of two sampling methods showed a good agreement with SMPS measurement. The effects of flame conditions and TEOS flow rates on silica particle size distributions are also investigated using the new particle dilution sampling probe. It is found that the particle size distribution characteristics and morphology are mostly governed by the coagulation process and sintering process in the flame. As the flame temperature increases, the effect of coalescence or sintering becomes an important particle growth mechanism which reduces the coagulation process. However, if the flame temperature is not high enough to sinter the aggregated particles then the coagulation process is a dominant particle growth mechanism. In a certain flame condition a secondary particle formation is observed which results in a bimodal particle size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号