首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A new and very general expression is proposed for correlation of data for the effective viscosity of pseudoplastic and dilatant fluids as a function of the shear stress. Most of the models which have been proposed previously are shown to be special cases of this expression. A straightforward procedure is outlined for evaluation of the arbitrary constants.
Zusammenfassung Eine neue und sehr allgemeine Formel wird für die Korrelation der Werte der effektiven Viskosität von strukturviskosen und dilatanten Flüssigkeiten in Abhängigkeit von der Schubspannung vorgeschlagen. Die meisten schon früher vorgeschlagenen Methoden werden hier als Spezialfälle dieser Gleichung gezeigt. Ein einfaches Verfahren für die Auswertung der willkürlichen Konstanten wird beschrieben.

Nomenclature b arbitrary constant inSisko model (eq. [5]) - n arbitrary exponent in eq. [1] - x independent variable - y(x) dependent variable - y 0(x) limiting behavior of dependent variable asx 0 - y(x) limiting behavior of dependent variable asx - z original dependent variable - arbitrary constant inSisko model (eq. [5]) andBird-Sisko model (eq. [6]) - arbitrary exponent in eqs. [2] and [8] - effective viscosity = shear stress/rate of shear - A effective viscosity at = A - B empirical constant in eqs. [2] and [8] - 0 limiting value of effective viscosity as 0 - 0() limiting behavior of effective viscosity as 0 - limiting value of effective viscosity as - () limiting behavior of effective viscosity as - rate of shear - arbitrary constant inBird-Sisko model (eq.[6]) - shear stress - A arbitrary constant in eqs. [2] and [8] - 0 shear stress at inBingham model - 1/2 shear stress at = ( 0 + )/2 With 8 figures  相似文献   

2.
Conclusions The investigations have shown that the auxiliary asynchronous parametric excitation ca be used to effectively suppress resonance vibrations in systems with highly nonlinear elast characteristics. Either local or wideband suppression of the resonance regime can be achieved, depending on the relation between the frequencies of the primary external and auxiliary parametric excitations (/=const or /const); also, the width and positions of the instability intervals can be controlled. This affords the possibility of using auxiliary parametric excitation not only to enhance the efficiency of nonlinear antivibration systems (by wideband suppression of resonance vibrations), but also for the design of fundamentally new resonance devices to monitor the frequency and amplitude of vibrations by exploiting the effect of local instability of the resonance regime.Polytechnic Institute, Riga. Translated from Prikladnaya Mekhanika, Vol. 27, No. 5, pp. 102–107, May, 1991.  相似文献   

3.
By using Donnell's simplication and starting from the displacement type equations of conical shells, and introducing a displacement functionU(s,,) (In the limit case, it will be reduced to cylindrical shell displacement function introduced by V. S. Vlasov) and a generalized loadq,(s,,),the equations of conical shells are changed into an eighth—order solvable partial differential equation about the displacement functionU(s,,). As a special case, the general bending problem of conical shells on Winkler foundation has been studied. Detailed numerical results and boundary coefficients for edge unit loads are obtained.The project supported by the National Natural Science Foundation of China.  相似文献   

4.
The behaviour of a system containing a mass traveling on a cantilever beam is considered. The mass is induced to move by an applied force as opposed to the case which has been considered in most literature where the position of the moving mass is assumed to be known and independent of the motion of the beam. Furthermore, the system to be discussed has the unique characteristic that the motions of the mass and the beam are coupled. The mathematical model of the system includes two coupled nonlinear integral/partial differential equations which are impossible to solve analytically and are difficult to solve numerically in their original form. As a remedy, the solution is discretized into space and time functions and the equations of motion are reduced to a set of ordinary differential equations. The shape function is chosen so that it satisfies the boundary conditions of the beam as well as the transient conditions imposed by the traveling mass. This choice of the shape function, which considers the mass-beam interaction, provides an improvement over the conventional method of using a simple cantilever beam mode shapes.The ordinary differential equations of motion using the improved shaped functions, are solved numerically to obtain the dynamic behaviour of the system. The results illustrate the validity of the model, and demonstrate the advantages of the improved model to the un-improved equations.  相似文献   

5.
We consider infiltration into a soil that is assumed to have hydraulic conductivity of the form K = K = Kseh and water content of the form = K – r. Here h denotes capillary pressure head while Ks, , and r represent soil specific parameters. These assumptions linearize the flow equation and permit a closed form solution that displays the roles of all the parameters appearing in the hydraulic function K and . We assume Ks and r to be known. A measurement of diffusivity fixes the product of and resulting in a parameter identification problem for one parameter. We show that this parameter identification problem, in some cases, has a unique solution. We also show that, in some cases, this parameter identification problem can have multiple solutions, or no solution. In addition it is shown that solutions to the parameter identification problem can be very sensitive to small changes in the problem data.  相似文献   

6.
Similarity solutions describing the flow behind a diverging strong cylindrical shock wave, advancing into a nonuniform gas having solid body rotation, are studied. The effects of the angular velocity variation on the shock velocity are shown graphically. It is found that an increase in the initial angular velocity leads to a decrease in the shock velocity.Nomenclature c 0 sound velocity in unperturbed state - c sound velocity in unperturbed state at the axis of symmetry - D nondimensional density in unperturbed state - E energy release per unit length - f nondimensional radial velocity in perturbed state - g nondimensional pressure in perturbed state - h nondimensional density in perturbed state - k nondimensional azimuthal velocity in perturbed state - M an integral - N another integral - P nondimensional pressure in unperturbed state - p pressure in perturbed state - p 0 pressure in unperturbed state - p pressure at the axis in unperturbed state - p 1 pressure immediately behind the shock front - R shock front radius - r radial coordinate - R 0 a characteristic length parameter - t time coordinate - U shock front velocity - u particle velocity (radial) in perturbed state - u 0 particle velocity (radial) in unperturbed state - u 1 particle velocity (radial) immediately behind the shock front - v particle velocity (azimuthal) in perturbed state - v 0 particle velocity (azimuthal) in unperturbed state - v 1 particle velocity (azimuthal) immediately behind the shock - w nondimensional azimuthal velocity in unperturbed state - x a nondimensional independent variable - z axial coordinate of cylindrical coordinates - Z a nondimensional independent variable - 0 angular velocity in unperturbed state - 1 angular velocity immediately behind the shock - density in perturbed state - 0 density in unperturbed state - 1 density immediately behind the shock - density at r=0 in unperturbed state - adiabatic index of the gas - 0 R 0 2 0 2 /(c)2  相似文献   

7.
Neck propagation in the stretching of elastic solid filaments having a yield point was analyzed using the space one-dimensional thin filament governing equations developed previously by the authors and other researchers. Constitutive model for the filament was assumed to be expressible as engineering tensile stress(X) (tensile force) given as a function of elongational strain with the(X) curve having a yield point maxima followed by a minima and a breaking point greater than the yield point maxima. Also incorporated into the model is the hysteresis of irreversible plastic deformation. When inertia is taken into consideration, the thin filament equations were found to reduce to the nonlinear wave equation 2 (X)/ 2 =C 1 2 X/ 2 where is Lagrangean space coordinate, is time, andC 1 is inertia coefficient. The above nonlinear wave equation yields a solutionX(, ) having a stepwise discontinuity inX which propagates along the axis. The zero speed limit of the step wave solution was found to describe the above neck propagation occurring in solid filaments. Furthermore, it was recognized that the nonlinear wave equation was known for many years to also govern the plastic shock wave which propagates axially within a metal rod subjected to a very strong impact on its end. The one-dimensional atmospheric shock wave also was known to be governed by the nonlinear wave equation upon making certain simplifying assumptions. The above and other evidences lead to the conclusion that neck propagation occurring in the extension of solid filament obeying the above(X) function can be formally described as a shock wave.  相似文献   

8.
Very few studies have been made of three-dimensional nonstationary cavitation flows. In [1, 2], differential equations were obtained for the shape of a nonstationary cavity by means of a method of sources and sinks distributed along the axis of thin axisymmetric body and the cavity. In the integro-differential equation obtained in the present paper, allowance is made for a number of additional terms, and this makes it possible to dispense with the requirement ¦ In ¦ 1 adopted in [1, 2]. The obtained equation is valid under the weaker restriction 1. In [3], the problem of determining the cavity shape is reduced to a system of integral equations. Examples of calculation of the cavity shape in accordance with the non-stationary equations of [1–3] are unknown. In [4], an equation is obtained for the shape of a thin axisymmetric nonstationary cavity on the basis of a semiempirical approach. In the present paper, an integro-differential equation for the shape of a thin axisymmetric nonstationary cavity is obtained to order 2 ( is a small constant parameter which has the order of the transverse-to-longitudinal dimension ratio of the system consisting of the cavity-forming body, the cavity, and the closing body). A boundary-value problem is formulated and an analytic solution to the corresponding differential equation is obtained in the first approximation (to terms of order 2 In ), A number of concrete examples is considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 38–47, July–August, 1980.I thank V. P. Karlikov and Yu. L. Yakimov for interesting discussions of the work.  相似文献   

9.
Nonlinear boundaryvalue problems of axisymmetric buckling of conical shells under a uniformly distributed normal pressure are solved by the shooting method. The problems are formulated for a system of six firstorder ordinary differential equations with independent rotation and displacement fields. Simply supported and clamped cases are considered. Branching solutions of the boundaryvalue problems are studied for different pressures and geometrical parameters of the shells. The nonmonotonic and discontinuous curves of equilibrium states obtained show that collapse, i.e., snapthrough instability is possible. For a simply supported shell, multivalued solutions are obtained for both external and internal pressure. For a clamped thinwalled shell, theoretical results are compared with experimental data.  相似文献   

10.
Summary Critical loads of clamped spherical shells, made up of orthotropic, heterogeneous material are obtained using a linear eigenvalue problem. The nonlinear differential equations of the prebuckled state are solved by Parametric Differentiation technique. The influence of varying the elastic moduli of the material has been studied. Continuously heterogeneous shells (heterogenity along the thickness) are investigated. Attention is further given to two layered shells, each layer being homogeneous and orthotropic. The effect of reversing the layers, on the buckling behaviour, is also analyzed.
Übersicht Die Bestimmung der kritischen Lasten von eingespannten kugelförmigen Schalen aus orthotropem, heterogenem Material wird als lineares Eigenwertproblem behandelt. Die nichtlinearen Differentialgleichungen für den Beulzustand werden durch parametrische Differentiation gelöst. Dabei wird der Einfluß von Veränderungen der elastischen Parameter des Materials untersucht. Es werden Schalen betrachtet, deren Heterogenität stetig längs der Schalendicke verteilt ist, sowie Schalen, die aus zwei homogenen und orthotropen Schichten zusammengesetzt sind. Der Einfluß einer Vertauschung der beiden Schichten auf das Beulverhalten wird analysiert.
  相似文献   

11.
We consider the linearized version of the stationary Navier-Stokes equations on a subdomain of a smooth, compact Riemannian manifold M. The emphasis is on regularity: the boundary of is assumed to be only C1 and even Lipschitz, and the data are selected from appropriate Sobolev-Besov scales. Our approach relies on the method of boundary integral equations, suitably adapted to the variable-coefficient setting we are considering here. Applications to the stationary, nonlinear Navier-Stokes equations in this context are also discussed.  相似文献   

12.
The asymptotic behaviour of the TDR step response is compared with the asymptotic behaviour of dielectrics in the frequency domain. For non conducting materials the asymptotic behaviour of the TDR step response appears to be related to the angles of intersection in the Cole-Cole plot. In the case of conducting materials the asymptotic behaviour for t depends on the low frequency conductivity, which suggests a new method of determining this conductivity from TDR experiments. Consequences are discussed for the accuracy of the determination of and from the TDR response obtained experimentally.  相似文献   

13.
Vehicle tyres are anisotropic inhomogeneous fibre-reinforced shells which undergo finite elastic deformations. Calculation of their stress and deformation fields is a difficult task and is normally performed using the finite element technique. In this paper an attempt is made to provide an approximate analysis of the deformation field modelling the tyre as an ideal fibre-reinforced material. Radial-ply tyres are reinforced by a belt of fibres running around the wheel in the circumferential direction under the tread of the tyre. A second set of fibres lies in each radial cross-section, of the tyre and runs from the bead wire which seats against one wheel rim to the bead wire at the other wheel rim. We shall assume each radial cross-section of the tyre is in a state of plane strain and is formed from an arch of fibre-reinforced composite material which is reinforced in the hoop direction. This composite is assumed to be an ideal material which is inextensible in the fibre-direction and is incompressible. The plane-strain deformations of this section are examined and then used to analyse the deformation of the tyre as a whole.  相似文献   

14.
A solution is obtained for the relationship between load, displacement and inner contact radius for an axisymmetric, spherically concave, rigid punch, indenting an elastic half-space. Analytic approximations are developed for the limiting cases in which the ratio of the inner and outer radii of the annular contact region is respectively small and close to unity. These approximations overlap well at intermediate values. The same method is applied to the conically concave punch and to a punch with a central hole. , , . , . . .  相似文献   

15.
Macro-Scale Dynamic Effects in Homogeneous and Heterogeneous Porous Media   总被引:1,自引:0,他引:1  
It is known that the classical capillary pressure-saturation relationship may be deficient under non-equilibrium conditions when large saturation changes may occur. An extended relationship has been proposed in the literature which correlates the rate of change of saturation to the difference between the phase pressures and the equilibrium capillary pressure. This linear relationship contains a damping coefficient, \tau, that may be a function of saturation. The extended relationship is examined at the macro-scale through simulations using the two-phase simulator MUFTE-UG. In these simulations, it is assumed that the traditional equilibrium relationship between the water saturation and the difference in fluid pressures holds locally. Steady-state and dynamic numerical experiments are performed where a non-wetting phase displaces a wetting phase in homogeneous and heterogeneous domains with varying boundary conditions, domain size, and soil parameters. From these simulations the damping coefficient can be identified as a (non-linear) function of the water saturation. It is shown that the value of increases with an increased domain size and/or with decreased intrinsic permeability. Also, the value of for a domain with a spatially correlated random distribution of intrinsic permeability is compared to a homogeneous domain with equivalent permeability; they are shown to be almost equal.  相似文献   

16.
Übersicht Die Fehlervorhersage eines einachsigen Fadenverbundwerkstoffes mit metallischer Matrix erfordert die Kenntnis des nichtlinearen elastisch-plastischen Verhaltens in mikroskopischer Abmessung. Als Fallstudie wurde ein spezieller Verbundwerkstoff mit einem FEM-Programm untersucht. Im plastischen Bereich wurde das klassische, v. Mises Potential' mit dem neuen Übergangsfließpotential unter Berücksichtigung der plastischen Volumendehnung verglichen. Unter transversaler Normalbelastung zeigte der Verbund deutliche Unterschiede in der Zunahme und der Ausdehnung der lokalen plastischen Zonen. Alle kritischen Verformungsstadien wurden von dem Übergangsfließpotential bei geringerer Belastung erreicht.
Numerical investigation of the elastic-plastic behaviour of a fibre-reinforced composite with a metallic matrix
Summary Failure prediction of unidirectional fibre-reinforced composite with a metallic matrix needs knowledge about the nonlinear elastic-plastic behaviour in a microscopic scale. A specific composite was investigated using a FEM-program as a case study. In the plastic range the classical v. Mises Potential was compared with the new Transition Flow Potential, taking into account the plastic volume dilatation. Subjected to transverse normal loading the composite showed evident differences in the increase and the spread of locally plastic regions. All critical deformation states were reached by the Transition Flow Potential at lower loading.
  相似文献   

17.
Shear softening and thixotropic properties of wheat flour doughs are demonstrated in dynamic testing with a constant stress rheometer. This behaviour appears beyond the strictly linear domain (strain amplitude 0 0.2%),G,G and |*| decreasing with 0, the strain response to a sine stress wave yet retaining a sinusoidal shape. It is also shown thatG recovers progressively in function of rest time. In this domain, as well as in the strictly linear domain, the Cox-Merz rule did not apply but() and | *())| may be superimposed by using a shift factor, its value decreasing in the former domain when 0 increases. Beyond a strain amplitude of about 10–20%, the strain response is progressively distorted and the shear softening effects become irreversible following rest.  相似文献   

18.
Numerical calculations have been made [1–4] of the pressure distribution over the surface of a sphere or cylinder during transverse flow in the range 0 /2, where is the angle reckoned from the stagnation point along the meridional plane, and on the basis of these results simple analytical equations have been proposed in order to determine the pressure for arbitrary Mach numbers M in the free stream. The gas is assumed to be ideal and perfect.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 185–188, March–April, 1985.  相似文献   

19.
The predictions for plastic buckling of shells are significantly affected by the plasticity model employed, in particular in the case of nonproportional loading. A series of experiments on plastic buckling of cylindrical aluminum alloy shells under biaxial loading (external pressure and axial tension), with well-defined loading and boundary conditions, was therefore carried out to provide experimental data for evaluation of the suitability of different, plasticity models. In the experiments, initial imperfections and their growth under load were measured and special attention was paid to buckling detection and load path control. The Southwell plot was applied with success to smooth the results. The results show that axial tension decreases resistance to buckling under external pressure in the plastic region due to softening of the material behavior. Comparison with numerical calculations usingJ 2 deformation and incremental theories indicate that both theories do not predict correctly plastic buckling under nonproportional loading.Babcock (SEM Member), deceased, was Professor of Aeronautics and Applied Mechanics, California Institute of Technology, Pasadena, CA 91125.  相似文献   

20.
An integral method of analyzing turbulent flow behind plane and axisymmetric steps is proposed, which will permit calculation of the pressure distribution, the displacement thickness, the momentum-loss thickness, and the friction in the zone of boundary layer interaction with an external ideal flow. The characteristics of an incompressible turbulent equilibrium boundary layer are used to analyze the flow behind the step, and the parameters of the compressible boundary layer flow are connected with the parameters of the incompressible boundary layer flow by using the Cowles-Crocco transformation.A large number of theoretical and experimental papers devoted to this topic can be mentioned. Let us consider just two [1, 2], which are similar to the method proposed herein, wherein the parameter distribution of the flow of a plane nearby turbulent wake is analyzed. The flow behind the body in these papers is separated into a zone of isobaric flow and a zone of boundary layer interaction with an external ideal flow. The jet boundary layer in the interaction zone is analyzed by the method of integral relations.The flow behind plane and axisymmetric steps is analyzed on the basis of a scheme of boundary layer interaction with an external ideal supersonic stream. The results of the analysis by the method proposed are compared with known experimental data.Notation x, y longitudinal and transverse coordinates - X, Y transformed longitudinal and transverse coordinates - , *, ** boundary layer thickness, displacement thickness, momentum-loss thickness of a boundary layer - , *, ** layer thickness, displacement thickness, momentum-loss thickness of an incompressible boundary layer - u, velocity and density of a compressible boundary layer - U, velocity and density of the incompressible boundary layer - , stream function of the compressible and incompressible boundary layers - , dynamic coefficient of viscosity of the compressible and incompressible boundary layers - r1 radius of the base part of an axisymmetric body - r radius - R transformed radius - M Mach number - friction stress - p pressure - a speed of sound - s enthalpy - v Prandtl-Mayer angle - P Prandtl number - Pt turbulent Prandtl number - r2 radius of the base sting - b step depth - =0 for plane flow - =1 for axisymmetric flow Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 33–40, May–June, 1971.In conclusion, the authors are grateful to M. Ya. Yudelovich and E. N. Bondarev for useful comments and discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号