首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of superoxide radical with a tricarboxylate derivative of perchlorotriphenylmethyl radical (PTM-TC) is studied. PTM-TC is a stable ("inert") free radical, which gives a single sharp electron paramagnetic resonance (EPR) peak in aqueous solutions. PTM-TC also gives a characteristic optical absorption at 380 nm. Superoxide, on reaction with PTM-TC, induced a decrease in the intensity of the EPR signal and optical absorption of PTM-TC at 380 nm. The signal loss was specific to superoxide and linearly dependent on the superoxide flux in the system. Competitive kinetics experiments revealed that PTM-TC reacts with superoxide with an apparent second-order rate constant of 8.3x10(8) M(-1) s(-1). Electrochemical and mass spectrometric analyses of the reaction suggested the formation of perchlorotriphenylmethane and molecular oxygen as products. The high sensitivity of detection of PTM-TC combined with the high rate constant of the reaction of superoxide with PTM-TC may offer a potential opportunity for measurement of superoxide in biological systems. In conclusion, the PTM-TC molecule has high sensitivity and specificity for superoxide radicals and thus may enable quantitative detection of superoxide generation in biological systems using EPR and/or spectrophotometric methods.  相似文献   

2.
Nitrones have exhibited pharmacological activity against radical-mediated pathophysiological conditions and as analytical reagents for the identification of transient radical species by electron paramagnetic resonance (EPR) spectroscopy. In this work, competitive spin trapping, stopped-flow kinetics, and density functional theory (DFT) were employed to assess and predict the reactivity of O(2)(*-) and HO(2)(*) with various para-substituted alpha-phenyl-N-tert-butylnitrone (PBN) spin traps. Rate constants of O(2)(*-) trapping by nitrones were determined using competitive UV-vis stopped-flow method with phenol red (PR) as probe, while HO(2)(*) trapping rate constants were calculated using competition kinetics with 5,5-dimethylpyrroline N-oxide (DMPO) by employing EPR spectroscopy. The effects of the para substitution on the charge density of the nitronyl-carbon and on the free energies of nitrone reactivity with O(2)(*-) and HO(2)(*) were computationally rationalized at the PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level of theory. Theoretical and experimental data show that the rate of O(2)(*-) addition to PBN derivatives is not affected by the polar effect of the substituents. However, the reactivity of HO(2)(*) follows the Hammett equation and is increased as the substituent becomes more electron withdrawing. This supports the conclusion that the nature of HO(2)(*) addition to PBN derivatives is electrophilic, while the addition of O(2)(*-) to PBN-type compounds is only weakly electrophilic.  相似文献   

3.
Nitrones such as 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) and 5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide (EMPO) have become the spin-traps of choice for the detection of transient radical species in chemical and biological systems using electron paramagnetic resonance (EPR) spectroscopy. The mechanism of decomposition of the superoxide radical anion (O2(.-)) adducts of DMPO, DEPMPO and EMPO in aqueous solutions was investigated. Our findings suggest that nitric oxide (NO) was formed during the decomposition of the O2(.-) adduct as detected by EPR spin trapping using Fe(II)N-methyl-d-glucamine dithiocarbamate (MGD). Nitric oxide release was observed from the O2(.-) adduct formed from hypoxanthine-xanthine oxidase, PMA-activated human neutrophils, and DMSO solution of KO2. Nitric oxide formation was not observed from the independently generated hydroxyl radical adduct. Formation of nitric oxide was also indirectly detected as nitrite (NO2(.-)) utilizing the Griess assay. Nitrite concentration increases with increasing O2(.-) concentration at constant DMPO concentration, while NO2(.-) formation is suppressed at anaerobic conditions. Moreover, large excess of DMPO also inhibits NO2(.-) formation which can be attributed to the oxidation of DMPO to hydroxamic acid nitroxide (DMPO-X) by nitrogen dioxide (NO2), a precursor to NO2(.-). Product analysis was also conducted to further elucidate the mechanism of adduct decay using gas chromatography-mass spectrometry (GC-MS) technique.  相似文献   

4.
Simple peptidomimetic molecules derived from amino acids were reacted with meta- and para-bis(bromomethyl)benzene in acetonitrile to very efficiently yield macrocyclic structures. The cyclization reaction does not require high dilution techniques and seems to be insensitive to the size of the formed macrocycle. The analysis of data obtained by (1)H NMR, single-crystal X-ray diffraction, fluorescence measurements, and molecular mechanics indicate that folded conformations can preorganize the system for an efficient cyclization. The role played by intramolecular hydrogen-bonding and solvophobic effects in the presence of folded conformations is analyzed.  相似文献   

5.
The unique ability of nitrone spin traps to detect and characterize transient free radicals by electron paramagnetic resonance (EPR) spectroscopy has fueled the development of new spin traps with improved properties. Among a variety of free radicals in chemical and biological systems, superoxide radical anion (O(2)(?-)) plays a critical role as a precursor to other more oxidizing species such as hydroxyl radical (HO(?)), peroxynitrite (ONOO(-)), and hypochlorous acid (HOCl), and therefore the direct detection of O(2)(?-) is important. To overcome the limitations of conventional cyclic nitrones, that is, poor reactivity with O(2)(?-), instability of the O(2)(?-) adduct, and poor cellular target specificity, synthesis of disubstituted nitrones has become attractive. Disubstituted nitrones offer advantages over the monosubstituted ones because they allow bifunctionalization of spin traps, therefore accommodating all the desired spin trap properties in one molecular design. However, because of the high number of possible disubstituted analogues as candidate, a systematic computational study is needed to find leads for the optimal spin trap design for biconjugation. In this paper, calculation of the energetics of O(2)(?-) and HO(2)(?) adduct formation from various disubstituted nitrones at PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level of theory was performed to determine the most favorable disubstituted nitrones for this reaction. In addition, our results provided general trends of radical reactivity that is dependent upon but not exclusive to the charge densities of nitronyl-C, the position of substituents including stereoselectivities, and the presence of intramolecular H-bonding interaction. Unusually high exoergic ΔG(298K,aq)'s for O(2)(?-) and HO(2)(?) adduct formation were predicted for (3S,5S)-5-methyl-3,5-bis(methylcarbamoyl)-1-pyrroline N-oxide (11-cis) and (4S,5S)-5-dimethoxyphosphoryl-5-methyl-4-ethoxycarbonyl-1-pyrroline N-oxide (29-trans) with ΔG(298K,aq) = -3.3 and -9.4 kcal/mol, respectively, which are the most exoergic ΔG(298K,aq) observed thus far for any nitrone at the level of theory employed in this study.  相似文献   

6.
Efforts to use the Marcus model to describe oxidations of the superoxide radical anion (O(2-)) by transition-metal complexes have failed dramatically, with discrepancies between theory and experiment spanning 13 orders of magnitude. As a result, the prevailing view is that these reactions involve some complex interactions that are not yet understood. We now show that once the familiar form of the Marcus cross relation (MCR) is modified to allow for the relatively small size of O(2-), excellent agreement is obtained between theory and experiment. This simple finding dispels the decades of uncertainty surrounding these reactions and provides a reliable method for determining whether oxidations of (O2)- occur via inner- or outer-sphere pathways. More generally, the modified MCR is applicable to any homogeneous electron-transfer process characterized by significant differences in size between electron donors and acceptors.  相似文献   

7.
8.
9.
Kinetic parameters were calculated for the electrochemical reduction of oxygen at a glassy-carbon electrode with the generation of superoxide radical anions in a 0.05 M solution of (C2H5)4NI in dimethylformamide in the presence of fat-soluble antioxidants, retinol and -tocopherol. A procedure based on the protonation of the radical anion with antioxidant molecules is proposed for the voltammetric determination of antioxidants to determine milligram amounts of retinol and -tocopherol in model solutions (RSD = 1–2%). The calibration graphs for retinol and -tocopherol are linear in the concentration ranges 9.7 × 10–5–2.3 × 10–3 and 6.2 × 10–4–3.1 × 10–3 M, respectively. The detection limits for retinol and -tocopherol are 4.8 × 10–5 and 4.1 × 10 –4 M, respectively. The procedure was applied to the determination of the active component (retinol and -tocopherol) in pharmaceuticals.Translated from Zhurnal Analiticheskoi Khimii, Vol. 60, No. 1, 2005, pp. 56–59.Original Russian Text Copyright © 2005 by Ziyatdinova, Gilmetdinova, Budnikov.  相似文献   

10.
Nitrones are potential synthetic antioxidants against the reduction of radical-mediated oxidative damage in cells and as analytical reagents for the identification of HO2* and other such transient species. In this work, the PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) and PCM/mPW1K/6-31+G(d,p) density functional theory (DFT) methods were employed to predict the reactivity of HO2* with various functionalized nitrones as spin traps. The calculated second-order rate constants and free energies of reaction at both levels of theory were in the range of 100-103 M-1 s-1 and 1 to -12 kcal mol-1, respectively, and the rate constants for some nitrones are on the same order of magnitude as those observed experimentally. The trend in HO2* reactivity to nitrones could not be explained solely on the basis of the relationship of the theoretical positive charge densities on the nitronyl-C, with their respective ionization potentials, electron affinities, rate constants, or free energies of reaction. However, various modes of intramolecular H-bonding interaction were observed at the transition state (TS) structures of HO2* addition to nitrones. The presence of intramolecular H-bonding interactions in the transition states were predicted and may play a significant role toward a facile addition of HO2* to nitrones. In general, HO2* addition to ethoxycarbonyl- and spirolactam-substituted nitrones, as well as those nitrones without electron-withdrawing substituents, such as 5,5-dimethyl-pyrroline N-oxide (DMPO) and 5-spirocyclopentyl-pyrroline N-oxide (CPPO), are most preferred compared to the methylcarbamoyl-substituted nitrones. This study suggests that the use of specific spin traps for efficient trapping of HO2* could pave the way toward improved radical detection and antioxidant protection.  相似文献   

11.
The 5-hexenyl radical adds to the anion of 2-nitropropane with a rate constant of ≈ × 106 L/mol-s at 40°. Hydrogen atom abstraction from BH4? occurs more slowly than abstraction from CH3O? and with a rate constant less than 1 × 104 L/mol-s at 30°. The reaction of Δ5- hexenylmercury chloride with sodium borohydride in MeOH/NaOH proceeds via hydrogen abstraction by the hexenyl radical from RHgH and not from NaBH4.  相似文献   

12.
Research on Chemical Intermediates - Among the reactive oxygen species, the superoxide anion radical (O 2 ·? ) has a fundamental role in several biological functions. Consequently, its...  相似文献   

13.
Optically active five-membered cyclic nitrones are readily obtained in a one-pot procedure via the organocatalytic Michael addition of aldehydes to nitroolefins and in situ reductive cyclization. Application of the methodology to the synthesis of tricyclic compounds through intramolecular 1,3-dipolar cycloaddition reactions (DFT calculations have also been performed) is also demonstrated. All the reactions were carried out in water as a solvent and excellent ee values (ee >99%) were obtained.  相似文献   

14.
15.
Up the tempo: The intramolecular addition of oxime radicals to C?C bonds was achieved by using DEAD and TEMPO to give 4,5-dihydroisoxazoles as a result of a C?O bond-forming, 5-exo-trig cyclization. γ,δ-Unsaturated ketoximes also reacted to afford cyclic nitrones through C?N bond formation. The reactions offer a metal-free approach for the vicinal difunctionalization of unactivated alkenes.  相似文献   

16.
Given that spin trapping/electron paramagnetic resonance (EPR) spectroscopy has become the primary technique to identify important biologically generated free radicals, such as superoxide (O(2)(*-)), in vitro and in vivo models, evaluation of the efficiency of specific spin traps to identify this free radical is paramount. Recently, a family of ester-containing nitrones has been prepared, which appears to have distinct advantages for spin trapping O(2)(*-) compared to the well-studied spin traps 5,5-dimethyl-1-pyrroline N-oxide 1 and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide 2. An important determinant in the selection of a spin trap is the rate constant (k(app)) for its reaction with O(2)(*-), and several different methods have been employed in estimating this k(app). In this paper, the two most frequently used scavengers of O(2)(*-), ferricytochrome c and Cu/Zn-SOD, were evaluated as competitive inhibitors for spin trapping this free radical. Data presented herein demonstrate that SOD is the preferred compound when determining the k(app) for the reaction of O(2)(*-) with spin traps. Using this model, the k(app) for the reaction of nitrone 1, 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide 3, and 5-methoxycarbonyl-5-methyl-1-pyrroline N-oxide 4 with O(2)(*)(-) was estimated to be 24.6 +/- 3.1, 73.0 +/- 12, and 89.4 +/- 1.0 M(-1) s(-1) at pH 7.0, respectively. Several other comparative studies between known spin traps were also undertaken.  相似文献   

17.
A new capillary electrophoresis method was developed to study the synergistic effect of superoxide dismutase and jujuboside A or B on scavenging superoxide anion radical in serum matrix respectively, in which superoxide anion radical was generated from pyrogallol autoxidation. The electrophoresis conditions, and the factors affecting the productive rate of purpurogallin, such as pyrogallol autoxidation product and the activity of superoxide dismutase, were optimized. Under optimal conditions, the content of superoxide dismutase in Gibco newborn calf serum was 7.06 mg/L, RSD was 2.01% and the average recovery was 98.4%. The values of IC50 for jujuboside A and B in the serum matrix were 157.67 and 31.60 mg/L respectively, and they both had synergy on scavenging superoxide anion radical with superoxide dismutase, but there was no the dose‐dependency on this synergy.  相似文献   

18.
19.
《Polyhedron》2001,20(9-10):1005-1009
The redox chemistry of catechin and its zinc(II) complexes has been studied in dimethyl sulfoxide. In the absence of base, catechin undergoes oxidation processes at 0.96 and 1.24 V versus SCE. The first process corresponds to the formation of the quinonic form of the catechol moiety. In the presence of 1 equiv. of base, a stable 1:2 complex is formed with oxidation processes that show up at 0.26 and 0.62 V versus SCE. The voltammetric and spectroscopic characterization of the species produced after the oxidation processes are described. Upon interaction of the complex with superoxide radical anion in dimethyl sulfoxide, its basic character causes the formation of the monoanion of catechin leading to a more stable zinc(II) complex. Protonated superoxide disproportionates to molecular oxygen and peroxide leading to oxidation of the bound ligand. Upon complexation the oxidation potentials decrease, favoring thermodynamically the antioxidant action of this flavonoid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号