首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
讨论了两种不同介电常数的固体颗粒不同配比时,对电流变液固态结构的影响.计算结果表明,颗粒的介电常数及配比变化时电流变液的固态结构没有变化,只影响其能量大小;而且发现在低介电常数颗粒的电流变液中加入少许高介电常数颗粒会引起体系能量的显著下降,从而增加了电流变液的稳定性和剪切应力.  相似文献   

2.
运用一套适合研究颗粒间相互作用的双光镊系统,通过对颗粒聚集时间的测量,得出颗粒聚集时间和电场的平方成反比.这是第一次用电流变液颗粒在动态情况下直接验证电偶极子对间的相互作用.发展了一套使用高速CCD摄像机进行扩散波谱(DWS)测量的方法,首次实时测量具有颗粒结构的非各态历经体系的自相关函数,以研究电流变液机理,得到了玻璃微珠电流变液的结构响应时间和力的响应时间;测量了不同电场下体系相关函数的特征衰减时间随时间的变化.在不同电场下测量扩散系数可以反映出相互作用力与电场的平方成正比.  相似文献   

3.
在外加电场情形下,电流变液中固体颗粒就极化而成为电偶极子.电偶极子之间由于静电相互作用而聚集形成为链,然后在一个比较成链过程长很多的时间\[1-3]中这些链又进一步聚集形成柱状体.从整体来看电流变液就从液态变为固态.从物理上看这是一个在外场作用下粒子聚集的过程.由于链之间相互作用形成柱的过程比成链过程慢很多,故在考虑固体颗粒在外场作用下形成链的过程中可以忽略链与链之间的相互作用.我们将取固体颗粒为球,其半径为a.  相似文献   

4.
用改进的溶胶-凝胶法制备了核壳型聚苯胺/钛酸钡复合微粉,通过TEM及FT-IR分析表征了其形貌及微观结构,用复合微粉与氯化石蜡油配制成无水电流变(ER)液,研究其不同膜厚核壳粒子的电流变性能.研究结果表明,聚苯胺/钛酸钡复合粒子配置成的电流变液的电流变性能较纯聚苯胺的为强;钛酸钡的涂层厚度对复合粒子电流变性能有重要影响;并在d=20 nm时获得最佳电流变性能.  相似文献   

5.
基于偶极近似,运用电极化方法,定量研究了电流变液中悬浮颗粒在外电场作用下其体积和形状的变化,并计算了其体积和形状的相对变化率.研究结果表明:悬浮颗粒的体积和形状的相对变化率均与电场强度的平方成正比,并与ER本身的性质有关.一般情况下,颗粒的体积和形状的相对变化率分别为8.4%和12.5%,对总体积变化率的贡献为1.68%.这种变化对于ER系统的电涨和电热都作出了贡献,仅当将颗粒当作刚性球时,其自由能才与电场强度的平方成正比.  相似文献   

6.
采用未经精制的石油催化裂化油浆的一步炭化产物,研究了将其作为电流变液粒子的可能性、条件和电流变性能.研究结果表明,经由油浆热转化所得焦化颗粒配制的电流变液的力学性能,在2 kV/mm直流场强下可达2 kPa以上,电流密度不超过60 μA/cm2,长期静置颗粒无明显沉降,是一种性能优良的实用型电流变液.  相似文献   

7.
采用在苯乙烯 (St)悬浮聚合过程中滴加甲基丙烯酸甲酯 (MMA)乳液聚合组分的悬浮 乳液复合聚合方法 ,制备大粒径聚苯乙烯 聚甲基丙烯酸甲酯 (PS PMMA)复合粒子 .研究聚合物粒径分布和颗粒形态的变化发现 ,在St悬浮反应中期滴加MMA乳液聚合组分后 ,聚合体系逐渐由悬浮粒子与乳胶粒子并存向形成单峰分布复合粒子转变 ,最终形成核 壳结构完整的大粒径PS PMMA复合粒子 ;在St悬浮反应初期滴加MMA乳液聚合组分 ,St与MMA一起分散成更小液滴 ,反应后期凝并成非核 壳结构复合粒子 ;在St悬浮反应后期滴加MMA乳液聚合组分 ,PMMA乳胶粒子与PS悬浮粒子基本独立存在 .根据以上结果 ,提出了St MMA悬浮 乳液复合聚合的成粒机理 .  相似文献   

8.
气相二氧化硅(FS)/低聚物纳米复合材料应用广泛于涂料、胶黏剂、锂离子电池、液体防弹衣等诸多领域.然而,极性低聚物与FS表面相互作用复杂,FS/低聚物复合材料(ONCs)的流变响应多种多样.如何实现ONCs流变行为调控,是长期困扰工业界的难题.本文详细总结了FS在ONCs领域的应用,将FS粒子间相互作用与ONCs流变性质相关联,综述ONCs界面层结构的表征、调控手段及界面层与流变行为的关系.结合本课题组对FS/极性低聚物体系界面及流变行为的研究成果,提出未来ONCs领域的2个重要方向,即研究界面结构与粒子-极性低聚物相互作用间的关系,并通过界面设计实现对纳米粒子/极性低聚物复合材料的流变行为的精确调控.  相似文献   

9.
从理论和试验两个方面研究了所设计的电流变阻尼器在大冲击下的抗冲击性能,分析了电流变液性能与阻尼器结构参数对抗冲击性能的影响.认为采用高性能的电流变液体及改变结构参数,都可以使电流变阻尼器的高速缓冲性能提高.电流变液流速对电流变液的屈服应力影响显著,其值随流速的增加按指数规律减小.从定性、定量两个方面分析了电流变阻尼器作为阻尼器效果不明显的原因为:由电流变效应引起的阻尼力在整个液压阻力中所占比例太小,不能通过改变电压来使液压阻力具有很大的调节可控范围.  相似文献   

10.
金属核心/高聚物膜复合悬浮相电流变流体材料   总被引:3,自引:0,他引:3  
针对电流变流体悬浮相材料的开发与研究,根据介质极化原理,设计开发了金属核心/高聚物膜复合悬浮相电流变流体材料,在乳液聚合与微胶囊包覆技术的基础上,制备出了金属核心/高聚物膜复合颗粒.并对这种金属核心/高聚物膜复合颗粒的电流变流体性能进行了测试与研究.从理论和实验上都说明了金属核心/高聚物膜复合悬浮相材料在改善电流变流体力学性能及稳定性方面具有潜力,是可以进一步提高与改进的电流变流体材料.  相似文献   

11.
The amount of ER effect is determined by the difference of dielectric constants of ER particles base liquid.The intensity of ER fluids can be characterized by the interaction of two particles. A double optical tweezers system suitable to study particle interaction is used to measure the particle aggregation time, and it is found that the particle aggregation time is proportional to the square of the electric field. This is the first time to directly measure the interaction of the electric dipoles of ER particles. A method is developed to use high speed CCD in measuring diffusing-wave spectroscopy (DWS), and, for the first time, the auto-correlation functions of nonegordic system of particle structure are measured to study the ER mechanism. Structure response time and force response time are obtained for glass beads ER fluid, and the time variation of characteristic decay times of system correlation functions under different electric fields is also measured. Diffusing coefficients under different fields imply that the interaction is proportional to the square of fields.  相似文献   

12.
The solid particles are adsorbed at liquid-liquid interfaces and form self-assembled structures when the particles have suitable wettability to both liquids. Here, we show theoretically how the extreme roughness on the particle surface affects their adsorption properties. In our previous work, we discussed the adsorption behavior of the solid particles with microstructured surfaces using the so-called Wenzel model [Y. Nonomura et al., J. Phys. Chem. B 110 (2006) 13124]. In the present study, the wettability and the adsorbed position of the particles with extremely rough surfaces are studied based on the Cassie-Baxter model. We predict that the adsorbed position and the interfacial energy depend on the interfacial tensions between the solid and liquid phases, the radius of the particle, and the fraction of the particle surface area that is in contact with the external liquid phase. Interestingly, the initial state of the system governs whether the particle is adsorbed at the interface or not. The shape of the particle is also an important factor which governs the adsorbed position. The disk-shaped particle and the spherical particle which is partially covered with the extremely rough surface, i.e. Janus particle, are adsorbed at the liquid-liquid interface in an oriented state. We should consider not only the interfacial tensions, but also the surface structure and the particle shape to control the adsorption behavior of the particle.  相似文献   

13.
Polyaniline (PANI) was synthesized via oxidative coupling polymerization in acid conditions and de-doped in solution of ammonia. The electrorheological (ER) properties of the PANI/silicone oil suspensions were investigated in oscillatory shear as functions of electric field strength, particle concentration, and host fluid viscosity. Consistent with literature, the PANI ER fluid exhibits viscoelastic behavior under the applied electric field and the ER response is strongly enhanced with increasing electric field strength and particle concentration. The dynamic moduli, G' and G' increase dramatically, by 5 orders of magnitude, as the electric field strength is increased to 2 kV/mm. A viscoelastic liquid to solid transition occurs at a critical electric field strength, in the range Ec = 50-200 V/mm, whose value depends on particle concentration and host fluid viscosity. The fibrillar structure formed in the presence of the applied field has a static yield strength tau(y), whose value scales with electric field strength as tau(y) approximately E(1.88). When the field is switched off a residual structure remains, whose yield stress increases with the strength of the applied field and particle concentration. When the applied stress exceeds the yield stress of the residual structure, fast, fully reversible switching of the ER response is obtained.  相似文献   

14.
Surface-conductive particles consisting of a poly(methyl methacrylate) (PMMA) core and a polyaniline (PA)-coated shell were synthesized and adopted as suspended particles for electrorheological (ER) fluids. The PA-PMMA composite particles synthesized were monodisperse and spherical in shape. The PA-PMMA suspensions in silicone oil showed typical ER characteristics under an applied electric field. The PA-PMMA composite particles possess a higher dielectric constant and conductivity than the pure PA particle, within an acceptable conductivity range for ER fluids, but the PA-based ER fluid showed larger shear-stress enhancement than the PA-PMMA-based systems. This phenomena can be explained by the interfacial polarizability of PA-based ER fluids, which is the difference between the ER fluid's dielectric constant and loss factor - this polarizability was higher than that of PA-PMMA-based ER fluids, as shown by the dielectric spectrum of each fluid. The insulating PMMA core suppressed the interfacial polarization in ER fluids, resulting in reduced interaction among particles under an imposed electric field.  相似文献   

15.
Electrorheological (ER) fluids are composed of dielectric particles dispersed in an inert liquid of low electric permittivity. Upon the application of an electric field ER fluids rapidly solidify, or increase their viscosity. Characteristic increase of the viscosity of ER fluids is due to the formation of particle chains that bridge the electrodes. This process is greatly affected by polarization processes within the solid phase and at the surface of the grains. These phenomena are governed by dopants, functional groups, structure of the solid particles and the solid/liquid interface. To find relations between parameters of the ER effect and material properties of components of ER fluids, two main types of the materials were investigated: conjugated polymers [polyphenylene (PPP), pyrolyzed polyacrylonitrile (PAN) and polythiophene] and solid electrolytes based on polyacrylonitrile complexed with inorganic salts. It was found that the ER activity resulted from surface polarization processes due to the presence of polar species (PAN) or bulk polarization related to mobile ions (PPP). Polythiophene, despite the presence of a conjugated system of multiple bonds, showed only residual ER effect. Solid electrolyte‐based fluids exhibited relatively high activity originated from ionic polarization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A simple lattice model has been used to study the formation of multilayer films by fluids with orientation-dependent interactions on solid surfaces. The particles, composed of two halves (A and B) were allowed to take on one of six different orientations. The interaction between a pair of differently oriented neighboring particles was assumed to depend on the degrees to which their A and B parts overlap. Here, we have assumed that the AA interaction was strongly attractive, the AB interaction was set to zero, while the BB interaction was varied between 0 and 1.0. The ground state properties of the model have been determined for the systems being in contact with non-selective and selective walls over the entire range of BB interaction energies between 0 and 1.0. It has been demonstrated that the structure of multilayer films depends on the strengths of surface potential felt by differently oriented particles and the interaction between the B halves of fluid particles. Finite temperature behavior has been studied by Monte Carlo simulation methods. It has been shown that the bulk phase phase diagram is qualitatively independent of the BB interaction energy, and has the swan neck shape, since the high stability of the dense ordered phase suppresses the possibility of the formation of disordered liquid-like phase. Only one class of non-uniform systems with the BB interaction set to zero has been considered. The results have been found to be consistent with the predictions stemming form the ground state considerations. In particular, we have found that a complete wetting occurs at any temperature, down to zero. Furthermore, the sequences of layering transitions, and the structure of multilayer films, have been found to be the same as observed in the ground state.  相似文献   

17.
Trimethylenemethane (TMM) diradical is the simplest non‐Kekulé non‐disjoint molecule with the triplet ground state (ΔEST=+16.1 kcal mol?1) and is extremely reactive. It is a challenge to design and synthesize a stable TMM diradical with key properties, such as actual aliphatic TMM diradical centers and the triplet ground state with a large positive ΔEST value, since such species provide detailed information on the electronic structure of TMM diradical. Herein we report a TMM derivative, in which the TMM segment is fused with three NiII meso‐triarylporphyrins, that satisfies the above criteria. The diradical shows delocalized spin density on the propeller‐like porphyrin π‐network and the triplet ground state owing to the strong ferromagnetic interaction. Despite the apparent TMM structure, the diradical can be handled under ambient conditions and can be stored for months in the solid state, thus allowing its X‐ray diffraction structural analysis.  相似文献   

18.
通过傅里叶变换红外光谱(FTIR)、傅里叶变换拉曼(FT-Raman)和488 nm拉曼光谱,结合密度泛函理论(DFT)计算研究了2-氨基苯并噻唑(ABT)在晶态和溶剂中的二聚体结构,并解释了质子性溶剂中ABT二聚体与溶剂分子间的氢键作用.电子光谱实验揭示了ABT二聚体的光物理和光化学反应;紫外吸收和荧光发射光谱结果表明,溶剂、激发波长和pH值对ABT二聚件激发态衰变具有调控作用;含时密度泛函理论(TD-DFT)解释了ABT二聚体双荧光现象,提出了高激发态的质子转移机理.  相似文献   

19.
The dc field rheological properties and frequency dependent dielectric properties of a set of electrorheological (ER) fluids composed of oxidized polyacrylonitrile or aluminosilicate materials dispersed in silicone oil were examined in this paper. Our experimental investigations show that there is a complicated relationship between the dielectric properties of dispersed particles and the ER effect. The dielectric loss of dispersed particles, which has not attracted much attention in previous work, was found to play a considerable role in ER response. The large dielectric loss tangent, experimentally around 0.10 at 1000 Hz, is found to be needed for a strong ER effect. A good ER solid material should first have large dielectric loss, and then the higher the dielectric constant, the stronger the ER effect. The large dielectric loss would facilitate the turning of dispersed particles, and the high dielectric constant would maintain the fibrillation structure stable and strong. Two processes, the particle turning process and the particle polarization process, are thought to be involved in ER activity. Our findings, in connection with the Wagner model, can better explain why the strongest ER effect occurs at particle conductivity of 10−7S/m; why the shear stress of some ER fluids decreases with frequency while with others the shear stress increases with frequency; and why trace water can enhance the ER effect considerably, which would help in understanding the mechanism of the ER effect. Too large a dielectric loss is thought to be unfavorable for the ER effect, and its suitable range is worth further study. The results also present a method of designing high performance ER fluids, which would significantly promote development of electrorheology and its application in industrial areas.  相似文献   

20.
The solid particles are adsorbed at interfaces and form self-assembled structures when the particles have suitable wettability to both liquids. Here, we show theoretically how the microstructure on the particle surface affects their adsorption properties. The physical properties of the interface adsorbing a particle will be described by taking into account the surface roughness due to the microstructure. The microstructure on the surface changes drastically the wettability and the equilibrium position of the adsorbed particle. Therefore, the contact angle of the particle at the three-phase contact line shifts with the particle surface area, because the surface roughness enhances the interfacial properties of the particle surface. Moreover, the range of the interfacial tensions at which the particle is adsorbed becomes narrower with the increase of the surface roughness. The effect of the particle shape on the adsorption properties is also studied. In the case of disk-shaped particles, the energy changes discontinuously when the plane surface of the particle contacts the liquid-liquid interface. The adsorbing position does not change with the surface roughness. The orientation of a parallelepiped particle at the liquid-liquid interface is governed by the aspect ratio and the surface area of the particle. On the other hand, the particle which is partially covered with the microstructured surface is adsorbed firmly at the interface in an oriented state. We should consider not only the interfacial tensions but also the surface structure and the particle shape to control the adsorption behavior of the particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号