首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increase in the utilization of Lavandula essential oil in industries led to an impressive rise in the demand for quality essential oils. However, a post-harvest drying of Lavandula species can be a decisive factor to determine the quantity and quality of essential oil. The study was conducted in western Himalayan conditions to assess the essential oil content and composition of two Lavandula species viz., lavender (Lavandula angustifolia Mill.), and lavandin (Lavandula × intermedia Emeric ex Loisel), at four different drying duration (0 h, 24 h, 48 h and 72 h after the harvest). The higher growth attributes viz., plant height (71.7 cm), ear length (8.8 cm), number of spikes (18.1), and number of flowers per ear (47.5) were higher in lavandin, while the number of branches (17.1) was higher in lavender. Essential oil content (%) and moisture reduction (%) were significantly higher at 72 h than at 0 h. The major components of lavender and lavandin essential oil were linalool (33.6–40.5%), linalyl acetate (10.8–13.6%), lavandulyl acetate (2.8–14.5%), and linalyl propionate (5.3–14.1%) in both the Lavandula species. There was a decreasing trend in linalool and an increasing trend in linalyl acetate content in lavandin, with an increase in drying duration up to 72 h; while in lavender, no regular trend was observed in linalool and linalyl acetate content. It was observed that linalool and linalyl acetate levels were the highest at 24 and 0 h of drying in lavender and lavandin, respectively, and essential oil extraction can be done according to the desire of the constituent at varied drying duration.  相似文献   

2.
The fate of linalool, geraniol and nerol and their acetates in aqueous citric and hydrochloric acids has been investigated. Linalool and linalyl acetate yield predominantly α-terpineol and 3,7-dimethyloct-1-en-3,7-diol (6). Geraniol and nerol afford α-terpineol, linalool and the isomeric 3,7-dimethyloct-2-en-1,7-diols (7 and 8). While both neryl and geranyl acetate give α-terpineol and linalool, the former affords Z-1-acetoxy-3,7-dimethyloct-2-en-7-ol (8a), and the latter the E-isomer 7a and 2β-acetoxymethyl-1α,3,3-trimethylcyclohexanol (13).  相似文献   

3.
Different compositions of monoterpenes are utilized for their pleasant scent in cosmetics and perfumes. However, the most commonly used fragrance terpenes easily oxidize upon contact with air, forming strongly skin‐sensitizing hydroperoxides. Due to their thermolability and low UV absorbance, detection methods for hydroperoxides are scarce. For the first time, a simple and sensitive method using LC/ESI‐MS/MS was developed to quantitatively determine hydroperoxides from the common fragrance compounds linalool, linalyl acetate, and limonene. The method was applied to autoxidized petitgrain oil and sweet orange oil. A separation was accomplished using a C3 column. The method LOD for the investigated hydroperoxides in the essential oils was below 0.3 μg/mL, corresponding to 0.3 ppm. For prevention purposes and according to EU regulations, concentrations in cosmetics exceeding 100 ppm in “rinse‐off” and 10 ppm in “stay‐on” products of linalool and limonene must be labeled. However, the products may still contain allergens, such as hydroperoxides, formed by oxidative degradation of their parent terpenes. The sensitivity and selectivity of the presented LC/MS/MS method enables detection of hydroperoxides from the fragrance terpenes linalool, linalyl acetate, and limonene. However, for routine measurements, the method requires further validation.  相似文献   

4.
Lavender and its products have excellent flavor properties. However, most studies focus on the aroma profiles of lavender essential oil (LEO). The volatiles in lavender extracts (LEs), either in volatile compositions or their odor characteristics, have rarely been reported. In this study, the odor characteristics of LEs and LEO were comprehensively investigated by gas chromatography-mass spectrometry (GC-MS), coupled with sensory evaluation and principal chemical analysis (PCA). In addition, the extraction conditions of lavender extracts from inflorescences of Lavandula angustifolia Mill. were optimized. Under the optimal conditions of extraction, twice with 95% edible ethanol as the solvent, the LEs tended to contain the higher intensity of characteristic floral, herbal and clove-like odors as well as higher scores of overall assessment and higher amounts of linalool, linalool oxides I and II, linalyl acetate, lavandulyl acetate and total volatiles than LEO. PCA analysis showed that there were significant differences on the odor characteristics between LEO and LEs. The LEO, which was produced by steam distillation with a yield of 2.21%, had the lower intensity of floral, clove-like, medicine-like, pine-like and hay notes, a lower score of overall assessment and lower levels of linalool oxides I and II, linalyl acetate, lavandulyl acetate and total volatiles compared with LEs, whereas the relative contents of linalool and camphor in LEO were significantly higher than that in LEs. Furthermore, the earthy, green and watery odors were only found in LEO. Concerning the odor characteristics and volatile compositions, the LEs had better odor properties than LEO. These results provided a theoretical basis for the industrial preparation of lavender-related products.  相似文献   

5.
利用吡啶与二氯亚砜反应 ,制成双吡啶盐 ,进而与四氢吡咯反应 ,一步法合成 4 ( 1 四氢吡咯 )吡啶(PPY)。利用PPY为催化剂进行沉香醇的酰化反应 ,并对影响反应的诸因素进行了讨论 ,醇的转化率为 99% ,酯的收率为 88.2 %。  相似文献   

6.
Lavandin (Lavandula × intermedia Emeric ex Loiseleur) essential oils (EOs), from Abrial, Super and Grosso cultivars, cultivated and extracted in the South East of Spain, were analysed by using GC/MS to determine their composition, in both relative (peak area) and absolute (using standard curves) concentrations. Linalool (34–47%), linalyl acetate (17–34%), camphor (4–9%) and eucalyptol (3–7%) were determined as the main molecules. This characterisation was completed with the enantioselective gas chromatography, where ( ? )-linalool, (+)-camphor and ( ? )-linalyl acetate were determined as the main components. Antioxidant activity was evaluated positively by several methods: activity against free radicals, chelating and reducing power, probably due to linalool and linalyl acetate. Mild inhibitory activity on lipoxygenase was observed supporting potential anti-inflammatory activity, mainly due to linalool and camphor. These properties support the potential use of L. × intermedia essential oils as natural cosmetic and natural pharmaceutical ingredient to fight several skin diseases.  相似文献   

7.
The water distilled essential oil from dried aerial parts ofStachys ibericasubsp.stenostachya(Lamiaceae) was analyzed by GC/MS. Seventy-one compounds were characterized representing 96% of the oil. The main constituents were found as linalyl acetate (42.2%), linalool (18.9%), geranyl acetate (8.2%), and -terpineol (5.3%).  相似文献   

8.
This study was designed to examine the effect of operating conditions on essential oil composition and antioxidant activity of coriander cakes. Twenty-nine components were determined in essential oils, which were mostly alcohol monoterpenes. The highest essential oil yields (0.11%) were obtained by the nozzle diameter of 5 mm. The main components of cake essential oil linalool, γ-terpinene, geranyl acetate, linalyl acetate and camphor showed significant variations with different nozzle diameter.The total phenol contents and condensed flavonoid contents varied between different nozzle diameters; the highest values obtained of small diameters (5 and 6 mm). Significant differences were also found in total tannin contents among different nozzle diameters. The total phenol contents decreased significantly (p < 0.05) when increased the nozzle diameter to 9 mm and reached 9.11 mg GAE/g.The screening of antioxidant activity of the different coriander cakes using the di(phenyl)-(2,4,6-trinitrophenyl) iminoazanium radical (DPPH) assay showed an appreciable reduction of the stable radical DPPH, although small nozzle diameter was the most efficient method with an IC50 reached of 55 μg/ml as compared with bigger diameter (IC50 = 88 μg/ml).All the extracts had lower β-carotene bleaching activity than that of synthetic antioxidant BHA and BHT. Coriander cake extracts presented a very low reducing power ability (EC50 ≈ 700 μg/ml) compared to ascorbic acid (EC50 = 40 μg/ml).  相似文献   

9.
《Comptes Rendus Chimie》2016,19(6):707-717
Using water as a green solvent with a variable geometry makes use of physical and chemical phenomena that are fundamentally different from those applied in conventional extraction techniques such as hydro-distillation, steam distillation or solvent extraction. Advantages and drawbacks of using water as a solvent with different physical and chemical states have been compared. A total of ten extraction techniques: hydro-distillation (HD), steam distillation (SD), turbo-hydro-distillation (THD), salt-hydro-distillation (NaCL-HD), enzyme-hydro-distillation (Enzyme-HD), micelle-hydro-distillation (Micelle-HD), ultrasound-hydro-distillation (US-HD) or subcritical water-hydro-distillation (SW-HD), solvent-free microwave extraction (SFME) and microwave steam distillation (MSD) were used to extract the essential oil from lavender (Lavandula L.) and their results were compared. The quantity was measured by the yield of essential oil and the quality was evaluated using the oil composition especially the content of linalyl acetate, linalool and terpin-4-ol compared with the corresponding control sample: Hydro-distillation. For environmentally friendly of the process: extraction time, total energy consumption and CO2 emission were considered and compared with conventional hydro-distillation. The mechanism explaining the linalyl acetate degradation has been resolved by using COSMO-RS software. Based on the present experimental conditions, it is recommended that lavender oil may be produced preferably by steam distillation assisted by microwave extraction to reduce the by-product formation by various chemical reactions and to get better oil recoveries.  相似文献   

10.
The enantiomeric distributions of linalool and linalyl acetate in various natural products are measured by enantioselective gas chromatography on alkyl-substituted cyclodextrins. Different plant cultivars were investigated by four extraction processes: steam distillation, solvent extraction, supercritical fluid extraction, and headspace analysis. Careful attention must be paid to linalool which undergoes partial racemization under certain processing conditions. In most cases, enantiomeric distribution is a powerful tool for authenticity testing.  相似文献   

11.
The essential oil of Nepeta satureioides Boiss. from Iran was isolated by hydrodistillation in yield of 0.06% (w/w). The chemical composition of the essential oil was analyzed by GC and GC-MS. Forty-five compounds accounting for 97.4% of the total oil were identified. The major components were linalool (23.8%), (Z,E)-farnesol (14.7%), linalyl acetate (11.1%), β-caryophyllene (6.6%), lavandulol acetate (6.6%), caryophyllene oxide (6.4%), and (Z)-β-farnesene (3.4%). Oxygenated terpenoids were the main group of compounds. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 144–145, March–April, 2006.  相似文献   

12.
Fragrance monoterpenes are widely used commercially due to their pleasant scent. In previous studies, we have shown that air‐exposed monoterpenes form hydroperoxides that are strong skin sensitizers. Methods for detection and quantification of the hydroperoxides in essential oils and scented products are thus desirable. Due to thermolability and low UV absorbance, this is a complicated task. We have recently developed a sensitive LC–ESI‐MS method, but with limited structural information and separation efficiency for positional isomers and stereoisomers. In the present study, we investigated derivatization with a trimethyl silyl reagent and subsequent GC with electron ionization MS for the determination of monoterpene hydroperoxides. All investigated monoterpene hydroperoxides could be chromatographed as thermostable trimethyl silyl derivatives and yielded the fragment m/z 89 ([OSi(CH3)3]+) at a higher extent compared to corresponding alcohols. Limonene‐2‐hydroperoxide and four other hydroperoxide isomers of limonene were separated and detected in sweet orange oil autoxidized for two months. The concentration of limonene‐2‐hydroperoxide isomers was found to be 19 μg/mg in total. Also isomers of linalyl acetate hydroperoxide and linalool hydroperoxide were detected in autoxidized petitgrain oil (two months). The presented GC–MS method showed concentrations in the same order as previous LC–MS/MS analysis of the same type of oils.  相似文献   

13.
A commercial lipase, “Lipolase T100”, was immobilised onto silica by means of physical adsorption. The silica-bound lipase was subsequently exposed to 1 vol. % glutaraldehyde (pentane-1,5-dial). The silica was loaded repeatedly with the Lipolase T100 in 0.05 M Tris buffer (pH 8.5) until saturation was achieved. During the 1st, 2nd, 3rd, 4th, and 5th cycles of loading of silica with the enzyme, the protein-binding on the silica achieved 51.73 %, 48.27 %, 26.92 %, 10.73 %, and 4.29 %, respectively. The synthesis of methyl salicylate (methyl 2-hydroxybenzoate) and linalyl ferulate (3,7-dimethylocta-1,6-dien-3-yl 4-hydroxy-3-methoxycinnamate) carried out at 45°C under shaking with mole ratios of 200 mM of acid and 500 mM alcohol in DMSO using 15 mg mL?1 of hyper-activated biocatalyst resulted in yield(s) of 77.2 % of methyl salicylate and 65.3 % of linalyl ferulate in the presence of molecular sieves. The hyper-activated biocatalyst was more efficient than the previously reported silica-bound lipase with minimum leaching of the enzyme from the reaction mixture. The K m and V max of the free (0.142 mM and 38.31 μmol min?1 mL?1, respectively) and silica-bound lipase (0.043 mM and 26.32 μmol min?1 mg?1, respectively) were determined for the hydrolysis of p-NPP. During repeated esterification studies using silica-bound lipase, yields of 50.1 % of methyl salicylate after the 5th cycle, and 53.9 % of linalyl ferulate after the 7th cycle of esterification were recorded. In the presence of molecular sieves (30 mg mL?1) in the reaction mixture, the maximum syntheses of methyl salicylate (77.2 %) and linalyl ferulate (65.3 %) were also observed. In a volumetric batch scale-up, when the reaction volume was increased to 50 mL, 44.9 % and 31.4 % yields of methyl salicylate and linalyl ferulate, respectively, were achieved.  相似文献   

14.
Each of the four tetrahydrofuran linalyl oxides was prepared by a Sharpless asymmetric dihydroxylation of geranyl acetate with AD-mix-α or AD-mix-β, followed by a stereoselective palladium-mediated cyclization using the chiral ligand C3-TunePhos.  相似文献   

15.
The potential of essential oils (EO), distilled from two aromatic plants—clary sage (Salvia sclarea L.) and coriander (Coriandrum sativum L.)—in view of applications as natural therapeutic agents was evaluated in vitro. These two were cultivated on a trace element (TE)-polluted soil, as part of a phytomanagement approach, with the addition of a mycorrhizal inoculant, evaluated for its contribution regarding plant establishment, growth, and biomass production. The evaluation of EO as an antioxidant and anti-inflammatory, with considerations regarding the potential influence of the TE-pollution and of the mycorrhizal inoculation on the EO chemical compositions, were the key focuses. Besides, to overcome EO bioavailability and target accession issues, the encapsulation of EO in β-cyclodextrin (β-CD) was also assessed. Firstly, clary sage EO was characterized by high proportions of linalyl acetate (51–63%) and linalool (10–17%), coriander seeds EO by a high proportion of linalool (75–83%) and lesser relative amounts of γ-terpinene (6–9%) and α-pinene (3–5%) and coriander aerial parts EO by 2-decenal (38–51%) and linalool (22–39%). EO chemical compositions were unaffected by both soil pollution and mycorrhizal inoculation. Of the three tested EO, the one from aerial parts of coriander displayed the most significant biological effects, especially regarding anti-inflammatory potential. Furthermore, all tested EO exerted promising antioxidant effects (IC50 values ranging from 9 to 38 g L1). However, EO encapsulation in β-CD did not show a significant improvement of EO biological properties in these experimental conditions. These findings suggest that marginal lands polluted by TE could be used for the production of EO displaying faithful chemical compositions and valuable biological activities, with a non-food perspective.  相似文献   

16.
The present study was aimed at determining the kinetics of evaporation and establishing vapor pressure curves for both single and multi-component systems by thermogravimetry (TG) and differential scanning calorimetry (DSC). Essential oils (e.g. lavender oil, orange oil, clove oil and eucalyptus oil, etc.) are typically multi-component systems consisting of various volatile pure components (e.g. linalyl acetate, limonene, cinnamaldehyde, etc.) which resemble single component systems. In this study linalyl acetate was taken as the calibration compound for TG. The vapor pressure curves for the pure substances were plotted using TG and vapor pressure plots for clove oil and eucalyptus oil were constructed using DSC. The thermodynamic and kinetic parameters of the pure compounds were compared to that of the multi-component systems to quantitatively and qualitatively measure the influence of different compounds on each other. The k-value from the vapor pressure data for linalyl acetate was calculated as 112006 Pa kg0.5mol0.5s-1 m-2 K-0.5. The vapor pressure values were used to determine the Antoine constants using the SPSS 10.0 software.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
Lavandula angustifolia Mill. (lavender) is an essential-oil-bearing plant in the Lamiaceae family. Volatile oil produced through the steam distillation of lavender was examined to establish the essential oil yield and aromatic profile from each portion of the plant—namely, the corolla, calyx, leaf, and whole flowering top. The resulting essential oils were analyzed by GC-FID and GC-MS. The different plant parts generally shared similar compounds but in varying relative percentages. Aromatic profiles of the whole flowering top and calyx were similar, with prominent compounds being linalool acetate (34.3%, 32.0%), linalool (26.5%, 32.9%), lavandulyl acetate (5.6%, 4.9%), terpinen-4-ol (5.3%, 7.0%), and (Z)-β-ocimene (4.5%, 5.4%), respectively. Aromatic profiles for the corolla and leaf were unique. Prominent aromatic compounds of the corolla included linalool acetate (18.4%), linalool (10.8%), epi-α-cadinol (10.0%), borneol (7.3%), and lavandulyl acetate (6.3%). Prominent aromatic compounds of the leaf included epi-α-cadinol (19.8%), γ-cadinene (11.0%), borneol (6.0%), caryophyllene oxide (4.9%), and bornyl acetate (4.8%). Complete profiles and essential oil yields of corolla, calyx, leaf, and whole flowering top were established. This study establishes the influence the corolla, calyx, and leaf exert on the aromatic profile of the whole flowering top and provides insight into authentication of lavender essential oil.  相似文献   

18.
Isomerization of 2-pinanol into linalool is studied on a monolith carbon-containing catalyst at 733–893 and a total pressure of 2–40 torr. The rate constants of cis(trans)-2-pinanol transformation into linalool and linalool cyclization are determined. Experimental data are described by the consecutive kinetic scheme. The mechanism of linalool formation is proposed according to which pinane ring opening occurs in an intramolecular reaction. A highly selective process of linalool synthesis by the thermal isomerization of 2-pinanol is shown to be possible.  相似文献   

19.
Geranyl pyrophosphate, linalyl pyrophosphate and neryl pyrophosphate are known to be important precursors for biosynthesis of cyclic terpenoids, and a variety of cationic intermediates have been suggested to be involved in their skeletal rearrangements1. Ferric chloride has recently been used as a Lewis acid to catalyze Friedel-Crafts reactions2, synthesis of esters and acetals3, a-glycosidation of peracetylated sugars4 and cyclization of 2-(trimethylsilylmethyl) pentadienal5. Therefore, i…  相似文献   

20.
Interest in the use of essential oils (EOs) in the biomedical and food industries have seen growing over the last decades due to their richness in bioactive compounds. The challenges in developing an EO extraction process that assure an efficient levels of monoterpenes with impact on biological activities have driven the present study, in which the EO extraction process of rosemary, lavender and citrus was performed by simultaneous hydrodistillation–steam distillation, and the influence of EO composition on biological activities, namely antioxidant, anti-inflammatory, antidiabetic, anti-acetylcholinesterase, anti-tyrosinase, antibacterial, and antibiofilm activity, were evaluated. The EO yields of combinations were generally higher than the individual plants (R. officinalis (Ro), L. angustifolia (La), and C. aurantium (Ca)) extracted by the conventional hydrodistillation. The EOs obtained by this process generally had a better capacity for scavenging the free radicals, inhibiting α-glucosidase, and acetylcholinesterase activities than the individual EOs. The combination of EOs did not improve the ability for scavenging peroxide hydrogen or the capacity for inhibiting lipoxygenase activity. The antioxidant activity or the enzyme inhibition activity could not only be attributed to their major compounds because they presented lower activities than the EOs. The chemical composition of the combination Ro:La:Ca, at the ratio 1/6:1/6:2/3, was enriched in 1,8-cineole, linalool, and linalyl acetate and resulted in lower MIC values for all tested strains in comparison with the ratio 1/6:2/3:1/6 that was deprived on those components. The biofilm formation of Gram positive and Gram negative bacteria was impaired by the combination Ro:La:Ca at a sub-inhibitory concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号