首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以微米级α-Al2O3、陶瓷水体分散剂为主要原料,以La2O3-水洗高岭土为烧结助剂,采用冰模板法制备了一种具有高孔隙率和较高抗压强度的氧化铝/高岭土复合定向多孔陶瓷.研究了不同添加量的La2O3对多孔陶瓷的显气孔率、体积密度、抗压强度和微观形貌的影响.结果表明:添加适量的稀土La2O3能降低多孔陶瓷烧结温度、提高体积密度和抗压强度.通过高能机械球磨法添加La2O3,在1350℃烧结制备的多孔材料样品显气孔率为82;,样品的抗压强度达到10 MPa以上.当La2O3加入量达到3;时,可使多孔陶瓷抗压强度提高到15.2 MPa,较不掺加La2O3提高了约53;.  相似文献   

2.
用低温燃烧合成的陶瓷粉体为原料,在1450℃下烧结制备了多孔Al2O3/ZrO2 (3mol; Y2O3)陶瓷,并研究ZrO2的外加量(Omol;、1Omol;、15mol;和20mol;)对多孔陶瓷显气孔率、抗弯强度、孔径分布和显微结构的影响.实验结果表明:与其他试样相比,ZrO2外加量为15mol;的试样的显气孔率和抗弯强度都明显提高,其最可几孔径约为1.1 μm.SEM和EBSD图片显示:外加ZrO2能显著影响多孔陶瓷的显微结构,其中外加15mol; ZrO2的多孔陶瓷中,氧化铝晶粒的平均尺寸较小,颈部较厚,这是其具有较高抗弯强度的主要原因.  相似文献   

3.
采用99;纳米η-Al2O3为原料,无压烧结制备单相氧化铝陶瓷,通过TG-DSC、XRD和SEM等手段对试样进行分析和表征,并测试其力学性能.结果表明:纳米η-Al2O3 1084.8℃时转变为α-Al2O3,转变温度小于理论转变温度;晶型转变释放的能量能够降低氧化铝陶瓷的烧结温度,1550℃时试样的相对密度达91.48;,显气孔率为2.45;,断裂韧性较高.由于η-Al2O3的密度小于α-Al2O3,无压烧结时试样发生晶型转变产生体积收缩,致密性较低,直接用η-Al2O3制备致密的单相Al2O3陶瓷较为困难.  相似文献   

4.
为降低氧化铝陶瓷制备成本,改善其性能,以价格低廉的纳米η-Al2 O3为原料,TiO2为烧结助剂,制备氧化铝陶瓷.研究了TiO2加入量对纳米η-Al2 O3氧化铝陶瓷的体积密度、显气孔率、物相组成和微观结构的影响.结果表明:TiO2通过增加氧化铝中铝离子点缺陷数量而提高其扩散系数,促进氧化铝陶瓷的致密化及晶粒的生长.η-Al2 O3到α-Al2 O3的相变首先在氧化铝颗粒表面进行,然后迅速扩散至内部完成.通过计算晶胞参数大小,定量证明刚玉晶体发育良好,引入适量TiO2对氧化铝陶瓷高温性能和化学稳定性影响较小.当TiO2加入量为2wt;,烧结温度为1600℃时,氧化铝陶瓷的性能优良,体积密度为3.70 g/cm3、显气孔率为1.2;,存在一定数量的晶间气孔和晶内气孔,晶体间结合紧密,晶粒尺寸10~30μm.  相似文献   

5.
探讨了三种粒径的α-Al2O3(粗颗粒、中颗粒和细颗粒)的颗粒级配和工艺条件对多孔陶瓷膜支撑体的孔径、孔隙率及其抗折强度的影响.结果表明:粗α-Al2O3颗粒(d50>29 μm)对多孔陶瓷的孔径分布起决定性作用,中、细颗粒的比例在一定程度上影响支撑体的孔隙率和抗折强度.SEM结果显示,经1650℃煅烧2h后,细α-Al2O3颗粒(d50<1.6μm)迁移至粗α-Al2O3颗粒间的颈部而基本消失,在一定程度上提高了颈部连接.在合适的颗粒堆积条件下,细颗粒有助于提高多孔陶瓷的抗折强度.但是,团聚的细α-Al2O3颗粒间优先烧结,不利于细颗粒的助烧增强作用.  相似文献   

6.
冯鑫  刘涛  黎阳 《人工晶体学报》2017,46(12):2332-2336
以煅烧α-Al2O3粉为骨料、磷酸二氢铝为高温烧成粘结剂、石蜡为成型助剂,通过模压成型、干燥、烧结等工序制备了氧化铝多孔陶瓷,研究了烧成温度和磷酸二氢铝含量对氧化铝多孔陶瓷微观形貌、物相组成、线收缩率、孔隙率和弯曲强度的影响,探讨了磷酸盐结合法烧结机理.结果表明:氧化铝多孔陶瓷物相由α-Al2 O3和AlPO4构成,在较低温度下,氧化铝颗粒仅依靠AlPO4的粘结作用而形成多孔陶瓷,氧化铝多孔陶瓷线收缩率和弯曲强度随磷酸二氢铝含量的增加而缓慢增大,孔隙率则缓慢降低;随着烧结温度的提高,AlPO4的存在促进了氧化铝颗粒间的液相烧结,线收缩率和弯曲强度随烧结温度的升高而显著增大,孔隙率也明显降低.  相似文献   

7.
以高纯石英粉、氧化铝粉以及玻璃粉作为主要原料,首先通过颗粒稳定泡沫法结合离心雾化干燥装置制备得到SiO2-Al2O3陶瓷微珠,然后将其紧密堆积于坩埚中,随后经1500 ℃下直接堆积烧结1 h,利用空心微珠高温下自发泡,成功制备孔分布均匀的多孔莫来石陶瓷.研究了SiO2-Al2O3陶瓷微珠中高纯石英粉、氧化铝粉和玻璃粉组成对多孔莫来石陶瓷性能的影响.该方法简便易行,可控性强.通过该方法可制得气孔率高达85.4;,抗压强度为(3.69±0.86) MPa,低介电常数为1.70的多孔莫来石陶瓷,有望应用于透波材料领域.  相似文献   

8.
以不同C/SiO2的碳化稻壳为硅源、碳源和成孔剂,添加α-Si3N4和少量烧结助剂,利用碳热还原氮化法原位制备多孔氮化硅陶瓷,研究了不同C/SiO2和烧结温度对多孔陶瓷相组成、显气孔率、抗弯强度和微观结构等性能的影响.结果表明:当选用碳化稻壳C/SiO2(质量比)为0.5和0.7时,在1450 ~ 1500℃的试样中有α-Si3N4和β-Si3N4,在1550℃的试样中只有β-Si3N4.C/SiO2为0.7、1450~1550℃下制备出多孔氮化硅陶瓷,其气孔率为52.53; ~38.48;,抗弯强度为44.07~83.40MPa;1550℃制备的多孔β-Si3N4陶瓷中孔隙分布均匀,孔径约为2μm,β-Si3N4呈团簇状生长,长径比约为6~8.  相似文献   

9.
以微米级SiC和Si粉为原料,采用冰模板法和氮化反应烧结法制备了孔道中修饰α-Si3N4、Si2N2O纳米线的β-Si3N4结合多孔SiC复相陶瓷.研究了反应烧结温度、SiC/Si比和固相含量对多孔陶瓷的物相结构、形貌、孔分布和压缩强度的影响.结果表明:多孔陶瓷具有层状定向通孔结构,孔隙率介于50; ~ 70;之间,孔径分布呈现双峰分布特点;当烧结温度达到1350℃以上时,在层状孔道中交织形成α-Si3N4和Si2N2O纳米线的网络结构.反应温度超过1450℃时,通过液态Si的氮化反应原位形成β-Si3N4结合相将SiC颗粒粘结起来;当浆料中Si含量由16wt;增加至33wt;时,多孔陶瓷的开气孔率从69.78;降至62.64;,而压缩强度由2.2 MPa提高到8.73 MPa;随着浆料固相体积含量从25;增加到45;,多孔陶瓷的气孔率从71.81;降至54.85;,同时压缩强度从4.99 MPa提高到24.16 MPa.  相似文献   

10.
以合成堇青石粉体为原料,以未改性的食用土豆淀粉为固化剂和造孔剂,利用淀粉固化成型工艺成功制备了堇青石多孔陶瓷,并研究了淀粉的添加量与浆料前驱体的粘度、多孔陶瓷的显气孔率、孔径分布及显微结构间的关系.实验结果表明:随着淀粉含量(10wt;~40wt;)的增加,浆料前驱体的粘度先略有增大后显著降低,多孔陶瓷的显气孔率显著增加,而气孔平均孔径明显减小.  相似文献   

11.
本研究中,以石油焦为造孔剂、Y2O3-Al2O3为烧结助剂,通过注浆成型制备出多孔氮化硅陶瓷.研究石油焦的加入量对多孔氮化硅陶瓷微观结构、力学性能及气体透气性的影响.结果表明:多孔氮化硅陶瓷的微孔是由长棒状的β-Si3N4晶粒互相搭接而成,大孔是由石油焦燃烧而成.随着石油焦加入量的增加,气孔率及达西渗透系数(μ)增大,但试样的抗弯强度降低.在起始α-Si3N4粉末中添加10wt;~50wt;石油焦、5wt; Y2O3-3wt;Al2O3 1800℃下保温2h制备出气孔率为37.08;~59.40;、抗弯强度为52.00~154.27 MPa、μ值为(3.04 ~6.87)×10-13m2的多孔氮化硅陶瓷.  相似文献   

12.
采用叔丁醇基凝胶注模成型工艺,以丙烯酰胺为单体制备了ZTA多孔陶瓷.优化了固含量、预混液浓度、引发剂用量和固化温度等成型工艺参数.分析了烧结温度和保温时间对多孔陶瓷气孔率及孔径分布的影响.研究发现固含量为10vol;、预混液浓度为15wt;、引发剂用量为20wt;、固化温度为40℃,在1500c℃条件下保温2h烧结得到的ZTA多孔陶瓷气孔率可达59.05;,最可及孔径为0.72 μm,孔径分布在0.40 ~5.00μm的气孔占总气孔的87.22;,压缩强度达到56.09MPa.  相似文献   

13.
陶瓷绝缘子沿面闪络现象是制约电真空器件使用的重要原因.以95;的Al2O3陶瓷为基料,掺杂0~1.5wt; Cr2O3,制备铬掺杂的氧化铝陶瓷绝缘子,研究了铬的掺杂含量对该绝缘材料烧结性能和真空绝缘性能的影响.结果表明:Cr3+掺杂显著降低了95;氧化铝陶瓷的气孔率,促进了陶瓷的烧结,并降低了陶瓷的烧结温度,使铬掺杂氧化铝陶瓷的晶粒更加细小均匀.掺杂量为0.5wt;的Cr2O3真空沿面闪络电压最高,达到65 kV/cm,主要原因是铬的掺杂降低了样品的气孔率和二次电子发射系数,过量掺杂造成了更多的晶体结构缺陷,反而降低了陶瓷绝缘子的真空耐电压.  相似文献   

14.
本文以镁渣,粉煤灰等为原料制备了镁渣基多孔陶瓷,评价了多孔陶瓷的孔隙参数,烧结性能,力学性能,渗透性能等,观察了多孔陶瓷的微观结构,研究了烧结温度、成型压力、原料配比和添加剂等因素等对多孔陶瓷理化性能的影响.结果表明,烧结温度1150℃,保温4 h可制得固废掺比为90;的镁渣基多孔陶瓷,成型压力对多孔陶瓷的气孔率、吸水率和体积密度具有较大影响.镁渣和粉煤灰的配比为7:2时,多孔陶瓷产品的综合性能较好.添加电石渣和碳粉为造孔剂能够匀化气孔分布,细化孔径,提高多孔陶瓷的气孔率和气体过滤性能.  相似文献   

15.
本文利用无机胶凝材料成功制备了莫来石多孔陶瓷.以硅藻土和ρ-Al2O3为原料,AlF3和MoO3为添加剂,利用ρ-Al2O3遇水硬化的特点,来实现陶瓷浆料的固化成型,再将成型后的陶瓷生坯经高温烧结得到莫来石多孔陶瓷.该方法绿色环保,整个制备过程中无有机物的排放.通过使用XRD、SEM等表征测试手段,研究了烧结温度对莫来石多孔陶瓷的相组成、微观形貌、线收缩率、开孔孔隙率以及抗压强度的影响.实验结果表明,制备的莫来石多孔陶瓷由生长良好的莫来石晶须构成,在1500℃下烧结的莫来石多孔陶瓷孔隙率可达到82.3;.  相似文献   

16.
针对多孔Al2O3陶瓷两相体系,研究了烧结温度、保温时间和石墨含量对陶瓷气孔率、晶粒尺寸的影响.结果表明:随着烧结温度的升高和保温时间的延长,晶粒尺寸增大而气孔率下降;随着石墨含量的增加,气孔率明显提高而晶粒尺寸变化不明显.在此基础上,通过进一步拟合晶粒生长和时间的双对数线性关系,得出在1300 ℃时多孔Al2O3陶瓷的晶粒生长指数为2.95,与理论值基本吻合.  相似文献   

17.
以脱硅高铝粉煤灰为主要原料、石墨为造孔剂制备多孔陶瓷.利用X射线衍射仪和扫描电子显微镜分析多孔陶瓷的物相组成和微观结构,万能试验机测试抗弯强度,阿基米德排水法测定显气孔率和体积密度,采用渗透通量评价其过滤性能.研究结果表明:随着烧结温度的升高,多孔陶瓷的莫来石含量、体积密度和抗弯强度逐步增大,刚玉和石英的含量、显气孔率、吸水率和对水的渗透通量逐渐减小.随着石墨添加量的增加,多孔陶瓷的物相组成变化不大,体积密度和抗弯强度逐步降低,显气孔率、吸水率和对水的渗透通量相应增加.添加30wt;石墨、1450℃烧结的多孔陶瓷,抗弯强度为9 MPa,显气孔率为48.28;,大气压下,对水的渗透通量达到714 L·m-2·h-1.  相似文献   

18.
本文以氮化硅,氮化硼,二氧化硅作为陶瓷基体材料,通过淀粉固结工艺,采用常压部分氧化烧结制备了氮化硅基多孔陶瓷。通过Zeta电位测试确定了制备陶瓷坯体的最佳pH值在9.42~10.76之间。混合浆料的浆料流变性能测试表明陶瓷浆料体系呈现剪切变稀特征。XRD分析结果表明在烧结样品组成成分为α-Si3N4、β-Si3N4、BN、Quartz low,sys以及Moganite。SEM的显示氮化硅基多孔陶瓷呈现片层型微观结构。显气孔率随淀粉含量增加而增加,试验制得多孔陶瓷显气孔率最大值高达73.2%。  相似文献   

19.
凝胶注模法制备吸声多孔陶瓷及其性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以普通建筑陶瓷坯料为原料、天然植物胶为凝胶剂,通过凝胶注模工艺研制了吸声多孔陶瓷.研究了多孔陶瓷的显微结构以及多孔陶瓷的显气孔率、孔径和厚度对吸声性能的影响.结果表明:延长浆料搅拌时间可提高试样的显气孔率,而较大的显气孔率使吸声曲线的吸声峰向高频方向偏移,吸声峰值呈现先增加后降低的趋势;适当增加浆料固含量可减小孔径,孔径变小导致试样吸声峰向低频方向缓慢偏移,吸声峰值提高;增加厚度有利于试样吸声峰向低频方向偏移,而不同频率范围内吸声系数变化趋势不同.  相似文献   

20.
以富铝尖晶石为原料,分别加入Y2O3细粉、Y2O3和α-Al2O3混合粉、钇铝石榴石前驱体,制备尖晶石-钇铝石榴石复相材料.研究了氧化钇的不同引入方式和烧结温度对尖晶石-钇铝石榴石复相材料烧结性能的影响,并通过XRD、SEM等手段对其物相组成和显微结构进行表征.结果表明:向富铝尖晶石中分别加入Y2O3细粉、Y2O3和αt-Al2O3混合粉、钇铝石榴石前驱体,均能制备出尖晶石-钇铝石榴石复相材料;当Y2O3和α-Al2O3混合粉的加入量为6;,经1750℃烧结3h后,所制备的试样的致密化程度较高,体积密度达3.34 g/cm3,显气孔率为8.0;,制备的试样中镁铝尖晶石、钇铝石榴石晶粒发育较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号