首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thorium to uranium ratio has been determined in different geological samples by using a new theoretical method based on calculating the probability for an emitted -particle to reach and be registered on a solid state nuclear track detector (SSNTD). Thorium as well as uranium contents of the samples studied have been determined by exploiting the track densities, due to the -particles of the thorium and uranium series, registered on the CR-39 and LR-115 SSNTD. Results obtained by this calculational method which does not need any calibration were compared to data obtained by isotope dilution mass spectrometry. The influence of the granulation on the uranium content in sedimentary phosphate samples has also been investigated.  相似文献   

2.
Radon -activity, uranium content and activity ratios of uranium and thorium [A c (238U)/A c (232Th)] have been determined in different layers of stratigraphical quaternary travertine deposits in the Errachidia area (High-Atlas, Morocco), by using two solid state nuclear track detectors (SSNTD), of CR-39 and LR-115 type II. The mineralogy of samples has been determined by X-ray diffraction. Correlation between the stratigraphy, uranium content and radon -activity has been investigated. An uranium-aragonite association has been found.  相似文献   

3.
The uranium and thorium contents were evaluated in the 100–400 µm granulometric fraction of different sedimentary phosphate samples by using a method based on determining the mean critical angles of etching of the CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD) for detecting -particles emitted by the nuclei of the uranium-238 and thorium-232 series. Data obtained were compared with the results of -ray spectrometry measurements performed on the same samples. The influence of the calcination and water washing treatments as well as the lithology and stratigraphy on the uranium concentration of the phosphate samples was investigated.  相似文献   

4.
Samples have been collected from different layers in a sedimentary phosphatic deposit and sieved. Different granulometric fractions have been selected. The uranium and thorium contents have been determined in each phosphate sample and its corresponding selected fractions. Radon (222Rn) α-activities per unit volume have been evaluated inside and outside each phosphate sample and its corresponding selected fractions by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD). The radon emanation coefficient in each phosphate layer has been determined and the global radon alpha activity outside a parallelepipedic block of the layers studied was evaluated. The influence of the lithology and granulation on the radon emanation has been studied.  相似文献   

5.
Uranium and thorium contents as well as radon and thoron -activity concentrations were evaluated inside different underground water samples by using a method based on calculating the CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs) detection efficiencies for the emitted -particles and measuring the resulting track density rates. The validity of the SSNTD technique utilized was checked by analysing uranium nitrate standard solutions. A relationship between water radon concentration and recharge of wells dug in two Moroccan Atlantic coastal regions, for a given lithology, was found. The influence of the lithology and depth on radon concentration and salinity of well waters studied was investigated.  相似文献   

6.
A simple and effective method is presented for the separation and preconcentration of thorium(IV) and uranium(VI) by solid phase extraction on Duolite XAD761 adsorption resin. Thorium(IV) and uranium(VI) 9-phenyl-3-fluorone chelates are formed and adsorbed onto the Duolite XAD761. Thorium(IV) and uranium(VI) are quantitatively eluted with 2 mol L−1 HCl and determined by inductively coupled plasma-mass spectrometry (ICP-MS). The influences of analytical parameters including pH, amount of reagents, amount of Duolite XAD761 and sample volume, etc. were investigated on the recovery of analyte ions. The interference of a large number of anions and cations has been studied and the optimized conditions developed have been utilized for the trace determination of uranium and thorium. A preconcentration factor of 30 for uranium and thorium was achieved. The relative standard deviation (N = 10) was 2.3% for uranium and 4.5% for thorium ions for 10 replicate determinations in the solution containing 0.5 μg of uranium and thorium. The three sigma detection limits (N = 15) for thorium(IV) and uranium(VI) ions were found to be 4.5 and 6.3 ng L−1, respectively. The developed solid phase extraction method was successively utilized for the determination of traces thorium(IV) and uranium(VI) in environmental samples by ICP-MS.  相似文献   

7.
The specific activities of 238U, 232Th, and 40K in selected building materials used in Japan were measured using a high-purity germanium detector. The uranium and thorium concentrations were determined from same samples using inductively coupled plasma mass spectrometry. There was a good agreement between the measurement of uranium and thorium with both methods (R 2 = 0.94, and 0.97, respectively). Based on the specific activities, we have estimated some hazard indexes such as radium equivalent activities (Ra eq), external hazard index (H ex), internal hazard index (H in), annual gonadal equivalent dose (AGED), internal alpha dose, mass exhalation rate and emanation coefficient of radon.  相似文献   

8.
An epithermal instrumental neutron activation analysis (EINAA) method using cadmium filter was standardized to determine trace concentrations of thorium in four samples of uranium oxide (U3O8) samples. Samples and thorium standards, wrapped with cadmium foil, were irradiated at a reactor neutron flux of about 1012 cm?2 s?1. Radioactive assay was carried out using a Compton suppressed anticoincidence gamma ray spectrometer consisting of HPGe-BGO detectors coupled to MCA. Concentrations of thorium in these samples were found to be in the range of 15–72 mg kg?1. EINAA results were validated by determining thorium concentrations in uranium matrix by standard addition method. EINAA results were compared with those obtained by two wet chemical methods namely ion chromatography (IC) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results obtained by the three methods were found to be in good agreement, indicating further validity of the proposed EINAA method.  相似文献   

9.
For the solution of most of the problems which are connected to the biological and physiological role of natural uranium in plants and animal organisms about 10−14 g uranium should be determined. However most of the physico-chemical methods for the determination of natural uranium in biomaterials are time-consuming and possess considerable error. On the basis of addition and inner standard methods a version of Solid State Nuclear Track Detectors (SSNTD) method has been developed in order to determine the natural uranium in biospecimens. According to the experimental data simple relations have been obtained for the calculation of uranium concentration in biomaterial and minium uranium concentration in biosolution which can be measured by the detector used. Under irradiation of SSNTD at a thermal neutron flux of (3–5)·1015n·cm−2 the detector sensitivity is 2.30·10−9 g U/ml for glass detectors; 9.60·10−10g U/ml for the detectors made from artificial mica.  相似文献   

10.
A fluorescence based method has been developed for the determination of trace amounts of uranium in thorium matrix using a mixture of phosphoric acid (H3PO4) and sulfuric acid (H2SO4), as fluorescence enhancing reagent for uranyl (UO2 2+) ion fluorescence. Synthetic samples mimicking the composition of ThO2 fuel were prepared and the concentration of U(VI) was estimated. Satisfactory results are obtained when uranium is present at a concentration of 10 ppm in solid thorium samples with good precision.  相似文献   

11.
Uranium (238U) and thorium (232Th) concentrations were evaluated in different cereal, fruit and vegetable samples by using a method based on the calculation of the detection efficiencies of the emitted a-particles by CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD) and measuring the resulting track densities. The influence of the soils on which the plants grow, and the fertilizers used was investigated. Total daily intakes of 238U and 232Th for a typical food basket were estimated to be 1.16 Bq.d-1 and 0.94 Bq.d-1, respectively, corresponding to a total committed effective dose of 0.27.10-7 Sv.d-1. Annual committed effective doses due to 238U and 232Th originated from the ingestion of different foodstuffs were evaluated for the adult members of the population by using the ICRP ingestion dose coefficients.  相似文献   

12.
Rapid scanning of numerous rock samples when prospecting for uranium and thorium ores can be facilitated by using the shorter-lived nuclides. The samples are activated during short epithermal neutron irradiations and the 20-min activities of 239U and 233Th are observed instrumentally with a small Ge(Li) detector. The detection limits for uranium and thorium are less than 1 ppm and 20 ppm, respectively.  相似文献   

13.
A new Monte Carlo computer code was developed for determining the detection efficiencies of the CR-39 and LR-115 II solid state nuclear track detectors (SSNTD) for a-particles emitted by radon (222Rn) and thoron (220Rn) series inside the atmosphere of dwelling rooms. Alpha-activities due to radon, thoron and their decay products, were evaluated for the determination of the detection efficiencies of the SSNTD utilized for the emitted a-particles by measuring the corresponding track densities. The influence of the ventilation rate and building material on the concentration of radon, thoron and their progenies was investigated. Equilibrium factors between radon and its progeny and between thoron and its daughters have been evaluated in the air of the rooms.  相似文献   

14.
The uptake of 238U and 232Th in different parts of some selected plants used in traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia area) has been studied using two different types of solid state nuclear track detectors (SSNTDs) LR-115 type II and CR-39. Plant uptake of radionuclides is one of many vectors for introduction of contaminants into the human food chain. Thus, it is critical to understand soil–plant relationships that control nuclide bioavailability. Soil concentrations of uranium ranged from 6.10 to 11.62 ppm, with a mean of 7.90 ppm. Soil concentrations of thorium ranged from 2.70 to 4.80 ppm, with a mean of 3.41 ppm. Mean uranium specific activities were 8.38 Bq kg−1 in root tissue, 5 Bq kg−1 in stem tissue and 6.02 Bq kg−1 in leaf tissue. Mean thorium specific activities were 2.53 Bq kg−1 in root tissue, 1.64 Bq kg−1 in stem tissue and 1.96 Bq kg−1 in leaf tissue. The transfer factors of 238U and 232Th from soil to different parts (root, stem, leaf, seed and fruit) of studied plant samples have been investigated. The transfer factors obtained for root plants were markedly higher than those for leaf, stem, fruit and seed plants. Soil-to-plant transfer factor (TF) is one of the most important parameters to be used in transfer models for predicting the concentration of radionuclides in agricultural crops and for estimating dose impacts to man. This study of uranium and thorium uptake in plants used in traditional medicine is also significant as far as the health hazard effects of uranium and thorium in human being are concerned.  相似文献   

15.
A flow-injection system with on-line separation and preconcentration is described for the spectrophotometric determination of trace uranium in geological samples. Uranium is selctively adsorbed from 0.7 mol l?1 nitric acid on a microcolumn (40 mm long, 4.4 mm i.d.) containing levextrel CL-5209 resin (120–200 mesh) and separated from the sample matrix and most of the co-existing ions; 10-fold concentration is obtained. Eluted uranium is determined spectrophotometrically with arsenazo-III. The detection limit is μg l?1 uranium and calibration is linear up to 0.3 mg l?1 uranium With dual columns operated alternately for adsorption and elution, 30 samples can be analyzed per hour. Masking agents are added to eliminate interferences from thorium and iron. The method is sensitive and highly selective, easy to operate and suitable for routine analysis of geological samples for uranium.  相似文献   

16.
The retention behavior of uranium, thorium and lanthanides has been investigated with amide modified reversed phase C18 supports using α-hydroxy isobutyric acid (α-HIBA) as the mobile phase. Four structurally different amide moieties namely, 4-hydroxy-N,N-dihexyl butyramide (4HHBA), 4-hydroxy-N,N-di-2-ethylhexylhexanamide (4HEHHA), bis(N,N,N′,N-2-ethylhexyl)malonamide (B2EHM) and N-methyl-tris(dihexylcarbamoyl-3-methoxy)pivolamide (MTDCMPA) have been synthesized and studied. Among the various amide coated columns, the supports modified with 4HHBA, B2EHM and MTDCMPA exhibit an interesting retention for uranium and thorium, which is different from 4HEHHA modified support. The retention time for uranium and thorium increases with increasing amide concentration for 4HHBA, B2EHM and MTDCMPA supports, while the same decreases with increasing 4HEHHA content. However, the separation factor for uranium and thorium is greater on a 4HEHHA support, compared to an unmodified C18 column, reflecting the amide's preferential complexation of uranium over thorium.Columns modified with 4HHBA, B2EHM and MTDCMPA exhibit relatively higher retentions for lanthanides. However, MTDCMPA modified support shows a different elution profile for lanthanides compared to 4HHBA, and B2EHM modified columns. Individual separations of heavier lanthanides, i.e., from gadolinium to lutetium also have been achieved using 4HHBA and B2EHM modified supports.The influence of modifier content, mobile phase concentration and its pH on the retention of metal ions has also been studied. Based on these investigations, an efficient high performance liquid chromatographic method (HPLC) has been developed for the rapid separation of uranium from thorium as well as for the individual separation of heavier lanthanides.  相似文献   

17.
This paper presents a simple, rapid and sensitive radiometric method for the determination of uranium in Thorex Process stream containing large amount of thorium. This method involves the extraction of uranium into 0.05M tri-n-octyl phosphine oxide (TOPO) in xylene at 2M HNO3. The extraction of thorium is prevented by masking them with suitable quantity of fluoride ions. The optimum experimental parameters for extraction of 233U were evaluated and using the most suitable experimental conditions the extracted uranium is radiometrically determined by α-counting in proportional counter with a prior knowledge of specific activity of uranium. Simultaneously in the same sample uranium was determined by spectrophotometric method using 2-(5bromo-2 pyridylazo)-5-diethylaminophenol (Bromo-PADAP) as chromogenic reagents. Simulated as well as actual samples of dissolver, conditioner and raffinate tank of Thorex stream have been analyzed by both these methods. The method was tested for as low as 0.15 μg of uranium and the results of these analyses were found to be satisfactory within the experimental limits.  相似文献   

18.
A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L−1 HNO3. The preconcentration factor was 100 for a 100 mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 μg L−1. The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g−1 for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.  相似文献   

19.
The paper describes a research of possible application of UTEVA and TRU resins and anion exchanger AMBERLITE CG-400 in nitrate form for the isolation of uranium and thorium from natural samples. The results of determination of distribution coefficient have shown that uranium and thorium bind on TRU and UTEVA resins from the solutions of nitric and hydrochloric acids, and binding strength increases proportionally to increase the concentration of acids. Uranium and thorium bind rather strongly to TRU resin from the nitric acid in concentration ranging from 0.5 to 5 mol L−1, while large quantities of other ions present in the sample do not influence on the binding strength. Due to the difference in binding strength in HCl and HNO3 respectively, uranium and thorium can be easily separated from each other on the columns filled with TRU resin. Furthermore, thorium binds to anion exchanger in nitrate form from alcohol solutions of nitric acid very strongly, while uranium does not, so they can be easily separated. Based on these results, we have created the procedures of preconcentration and separation of uranium and thorium from the soil, drinking water and seawater samples by using TRU and UTEVA resins and strong base anion exchangers in nitrate form. In one of the procedures, uranium and thorium bind directly from the samples of drinking water and seawater on the column filled with TRU resin from 0.5 mol L−1 HNO3 in a water sample. After binding, thorium is separated from uranium with 0.5 mol L−1 HCl, and uranium is eluted with deionised water. By applying the described procedure, it is possible to achieve the concentration factor of over 1000 for the column filled with 1 g of resin and splashed with 2 L of the sample. Spectrophotometric determination with Arsenazo III, with this concentration factor results in detection limits below 1 μg L−1 for uranium and thorium. In the second procedure, uranium and thorium are isolated from the soil samples with TRU resin, while they are separated from each other on the column filled with anion exchanger in alcohol solutions. Anion exchanger combined with alcohol solutions enables isolation of thorium from soil samples and its separation from a wide range of elements, as well as spectrophotometric determination, ICP-MS determination, and other determination techniques.  相似文献   

20.
A time-saving and sensitive method for monitoring low concentration (activities) of 210Pb, 232Th, and 230Th and 238U, 234U, and 235U in water samples has been developed. Through the combination of co-precipitation and extraction chromatography by 3M RAD disks and UTEVA (Eichrom) columns effective radiochemical separation of the analytes was carried out. Thorium and uranium activities were determined by alpha spectrometry and lead activity by LSC, respectively. The minimal detectable activities obtained were 0.6?Bq?m?3 for uranium, 0.29?Bq?m?3 for thorium, and 2.5?Bq?m?3 for 210Pb. More than 150 different waters were analysed for uranium content and only 30 for lead and thorium. The investigations are still in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号