首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rostrum of Belemnitella americana (Morton) from the Marshalltown formation (Kmt, Upper Cretaceous) of the Chesapeake and Delaware Canal was investigated by electron paramagnetic resonance (EPR) spectroscopy. The rostrum composed of biogenic calcite possessed inorganic radical centers CO2, SO2, and SO3 with isotropic resonances with g values of 2.0007, 2.0057, and 2.0031, respectively. SO3 was found to also display an axially symmetric resonance typical of that seen in calcite of geologic origin with g=2.0036 and g=2.0021. Mn2+ signals of orthorhombic symmetry and very narrow line width (∼0.1 mT) were also noted (|D|=9.3 mT (∼0.009 cm−1), |E|=3.1 mT (∼0.003 cm−1)). Isochronal annealing studies reveal that these inorganic radical species reside in energy traps that are significantly deeper than previously determined as revealed by their annealing temperatures: SO2 (isotropic), T*∼340 °C; SO3 (isotropic), T*∼230 °C; SO3 (axial), T*∼190 °C. These data suggest that these spin centers may be used to extend the upper limit for dating purposes to times on the order of 1 Ma for SO3 (axial) and 200–300 Ma for SO3 (isotropic). Spin–spin and spin–lattice relaxation studies employing progressive microwave saturation were determined for all sulfur-based radical species and found to be consistent with the supposition of the isotropic signals existing in environments that are conducive to dynamic averaging of the g-anisotropy.  相似文献   

2.
The reaction of OH with naringenin (4′,5,7-trihydroxyflavanone) in the presence of air induced the formation of the hydroxylation product eriodictyol (3′,4′,5,7-tetrahydroxyflavanone). Its yield was dependent on pH. The initial degradation yield of naringenin was Gi(-Nar)=(2.5±0.2)×10−7 mol dm−3 J−1. For the reaction with OH, a rate constant k (OH+naringenin)=(7.2±0.7)×109 M−1 s−1 was determined. In the presence of N2O and NaN3/N2O, no eriodyctiol was formed. Apigenin (4′,5,7-trihydroxyflavon) was detected as decay product of the naringenin phenoxyl radicals. In Ar-saturated solutions, naringenin exhibited a pronounced radiation resistance, G(-naringenin) ∼0.3×10−7 mol dm−3 J−1.  相似文献   

3.
Reaction of native and thermally denatured bovine serum albumin (BSA) with carbonate radical anion (CO3) has been studied using pulse radiolysis technique. Scavenging of CO3 by native BSA and consequent electron transfer from tyrosine to tryptophan radical has been observed to occur with almost same rate constant (k∼1.7×108 dm3 mol−1 s−1) at pH 8.8. Effect of structural changes, due to thermal denaturation, on scavenging of CO3 and the electron transfer process have been studied and discussed in this paper.  相似文献   

4.
One-electron oxidation of 1,1′-dimethyl-2-selenourea (DMSeU) by hydroxyl radicals, one-electron-specific oxidants, was studied using pulse radiolysis technique in aqueous solution. Hydroxyl (OH) radicals and one-electron oxidants, N3, X2 (X=Cl, Br, and I) react with DMSeU to form a transient having an absorption spectrum with λmax at 430 nm. By following the absorbance at 430 nm as a function of solute concentration and in analogy with similar sulfur and selenium compounds, this transient is assigned to dimer radical cation. The dimer radical cations of DMSeU react with oxygen with bimolecular rate constant of 1.0±0.3×108 M−1 s−1. Steady-state γ-radiolysis studies on aqueous solution of DMSeU under hydroxyl radical-induced oxidation condition indicated formation of elemental selenium as one of the by-products, which has been stabilized by the addition of poly vinyl alcohol (PVA), and characterized by dynamic light scattering technique.  相似文献   

5.
Pulse radiolysis technique has been employed to study the reaction of different oxidizing and reducing radicals with mangiferin. The reaction of OH radical showed the formation of transient species absorbing in 380–390 and 470–480 nm region. The reaction with specific one-electron oxidants (N3, CCl3O2) also showed the formation of similar transient absorption bands and is assigned to phenoxyl radicals. The pKa values of the transient species have been determined to be 6.3 and 11.9. One-electron oxidation potential of mangiferin at pH 9 has been found to be 0.62 V vs. NHE. The reaction of eaq showed the formation of transient species with λmax at 340 nm, which is assigned to the ketyl anion radical formed on addition of eaq at carbonyl site. Reactions of one-electron oxidised mangiferin radicals with ascorbic acid have also been studied.  相似文献   

6.
The hydroxyl radical (OH), a product of water radiolysis, reacts to hydroxylate aromatic organic compounds. In some cases, these hydroxylated products are fluorescent. Examples include the benzoate, coumarin, and phenoxazinone systems. For representative members of these systems, we have determined both the rate constants for reaction with OH and the yields of the fluorescent products. The rate constants all fall in the range 2×109 to 2×1010 L mol−1 s−1, and the yields 5–11% per OH. These results suggest that it may prove feasible to construct a probe consisting of two groups both of which must react with OH to become fluorescent. The efficient process of fluorescence resonance energy transfer implies that such a probe might be able to detect OH clusters, which are generally assumed to be a characteristic feature of energy deposition by ionizing radiation.  相似文献   

7.
We report here a new and very efficient method for the coverage of different carbon materials with 9,10-anthraquinone attached via a methylene linker. The method is based on one-electron reduction of 2-(bromomethyl)anthraquinone (AQ-CH2-Br) to a free radical AQ–CH2 which was readily achieved using propylene carbonate (PC) as solvent containing tetrabutylammonium iodide. This way, the radical AQ–CH2 adds to the abovementioned carbons forming very stable and dense covalently bound anhraquinonyl methane layers (Г  2 × 10 9 mol cm 2). The grafting could be performed by constant potential electrolyses (q < 0.5 × 10 3 C mm 2).  相似文献   

8.
Aqueous solutions containing the minichromosomal form of the virus SV40 and the radical scavenger DMSO were subjected to γ-irradiation, and the resulting formation of single-strand breaks (SSB) was quantified. Under the irradiation conditions, most SSBs were produced as a consequence of hydroxyl radical (OH) reactions. By controlling the competition between DMSO and the viral DNA substrate for OH, we are able to estimate the rate coefficient for the reaction of OH with the SV40 minichromosome. The results cannot be described adequately by homogeneous competition kinetics, but it is possible to describe the rate coefficient for the reaction as a function of the scavenging capacity of the solution. The experimentally determined rate coefficient lies in the range 1×109–2×109 L mol−1 s−1 at 107 s−1, and increases with increasing scavenging capacity.  相似文献   

9.
Pulse radiolysis of aqueous diphenyloxide (DPO) has been performed under various experimental conditions. The OH radicals react with DPO on various positions of the molecule with a rate constant, k=2.1×1010 l mol−1 s−1. The major reaction step appears to be a cleavage of the C–O bond of DPO resulting into C6H4OH (λ=285 nm) and C6H5O(λ=325 nm) radicals in addition to DPO–OH adducts. They disappear according to a second-order reaction. In the presence of air or in a gas mixture of N2O:O2=4:1 the DPO–OH adducts are scavenged by oxygen, resulting into peroxyl radicals, which are long-lived species. For the reaction of eaq with DPO a rate constant, k=2×1010 l mol−1 s−1 was found.  相似文献   

10.
The article presents a simple method that can be used to get the concentration of various species in mixed-modifier borate glasses. By using the fraction of four coordinated boron in xCaO (30  x)Na2O70B2O3 (0  x  27.5 mol%) and xCaO(40  x)Na2O60B2O3 glasses (10  x  40 mol%), the concentration of BO4 and asymmetric BO3 units related to each modifier oxide could be determined. CaO has a greater tendency to form asymmetric BO3 units in the first glass series, while Na2O has the ability to form BO4 units to a greater extent. In xCaO(40  x)Na2O60B2O3 glasses, BO4 and asymmetric BO3 units are formed at the same rate from Na2O and CaO. The fraction of four coordinated boron, can be predicted by treating the studied glasses as if they are mixtures of Na2O–B2O3 and CaO–B2O3 matrices. The change in N4 is due to change in the relative concentration of these matrices.  相似文献   

11.
《Vibrational Spectroscopy》2009,49(2):259-262
In order to evidence the structural changes induced by CuO and V2O5 in the phosphate glass network and their modifier or former role, x(CuO·V2O5)(100  x)[P2O5·CaO] glass system was prepared and investigated using Raman spectroscopy (0  x  40 mol%).Raman spectra of the studied glasses present the specific bands of the phosphate glasses at low concentration of transition metal (TM) ions, but at higher concentration (x > 7 mol%) a strong depolymerization of the phosphate network appears; non-bridging oxygen atoms are involved in VOP and CuOP bonds and new short units are formed. For a high concentration of V2O5 (x > 10 mol%) the Raman bands of V2O5 prevail in the spectra; this fact suggests that vanadium oxide imposes its structural units in the network acting thus as a network glass former.2D correlation analysis was also applied for the concentration-dependent Raman spectra in order to verify the assignments of the vibration modes and to find correlations in the changes induced by TM ions content. 2D correlation maps indicate a good correlation between the bands at ∼705 cm−1 assigned to POP stretching vibration and at ∼1175 cm−1 assigned to PO2 groups which suggest the depolymerization of the phosphate network. The correlation between the 1270 cm−1 and 930 cm−1 bands also suggests that V2O5 oxide is responsible for PO bonds breaking and POV formation.  相似文献   

12.
In a recent paper (Radiation Physics and Chemistry, 2005, vol. 74, pp. 210) it was suggested that the anomalous increase of molecular hydrogen radiolysis yields observed in high-temperature water is explained by a high activation energy for the reaction H+H2O→H2+OH. In this comment we present thermodynamic arguments to demonstrate that this reaction cannot be as fast as suggested. A best estimate for the rate constant is 2.2×103 M−1 s−1 at 300 °C. Central to this argument is an estimate of the OH radical hydration free energy vs. temperature, ΔGhyd(OH)=0.0278t−18.4 kJ/mole (t in °C, equidensity standard states), which is based on analogy with the hydration free energy of water and of hydrogen peroxide.  相似文献   

13.
The effect of high-energy radiation on Acid Red 1 (AR1) azo-dye solution was investigated by UV–Vis spectroscopy and chemical oxygen demand (COD) measurements. Doses in the order of 10 kGy cause complete decolouration of the 10−3–10−4 mol dm−3 solutions; however, for complete mineralization doses higher by 1–2 order of magnitude are needed. Hydrated electrons and H atom are more effective in fading reaction, while the OH radicals have higher efficiency in mineralization. The HO2/O2•− radical–radical anion pair is rather inefficient in fading reaction.  相似文献   

14.
The reactions of OH radicals with 2-, 3-, 4-chlorobenzoic acids (ClBzA) and chlorobenzene (ClBz), k(OH+substrates)=(4.5?6.2)×109 dm3 mol?1 s?1, have been studied by pulse radiolysis in N2O saturated solutions. The absorption maxima of the OH-adducts were in the range of 320?340 nm. Their decay was according to a second-order reaction, 2k=(1?9)×108 dm3 mol?1 s?1. In the presence of N2O/O2 the formation of peroxyl radicals was detectable for 2-, 4-ClBzA and ClBz, k(OH-adduct+O2)=(2?4)×107 dm3 mol?1 s?1, while this reaction for 3-ClBzA was too slow to be registered. In the presence of N2O the degradation rates induced by gamma radiation were very similar for all chlorobenzoic acids, yet the chloride formation was distinctly higher for 3-ClBzA. In the presence of oxygen the initial degradation of 2-and 4-ClBzA equaled the OH-radical concentration, whereas in case of 3-ClBzA only ~60% of OH led to degradation. The order for the efficiency of dehalogenation was 4->2->3-ClBzA. Several primary radiolytic products could be detected by HPLC. To evaluate the toxicity of final products a bacterial bioluminescence test was carried out.  相似文献   

15.
The effect of N+ implantation on the activities of CAT, POD, SOD, T-AOC and the capacities of scavenging O2 and OH in Blakeslea trispora (−) were studied. Results showed that N+ implantation caused different changes of CAT, POD, SOD, T-AOC activities and cell scavenging O2 and OH capacities. With the implantation dose increasing CAT activity was lower than the control sample, while POD, SOD activities and the scavenging O2 and OH capacities all decreased at the beginning, and then increased lately. At the dose of 6.0×1015 N+ cm−2 T-AOC activity was lowest, while at the dose of 1.2×1015 N+ cm−2 its activity was highest, and this change trend was same to the B. trispora (−) survival rate curve. So we speculated that the changes of these antioxidases activity of B. trispora (−) induced by low-energy N+ probably have some relationship with its “saddle shape” survival rate curve.  相似文献   

16.
Low-density polyethylene (LDPE) was irradiated with proton (3 MeV) and copper (120 MeV) ions to analyze the induced modifications with respect to optical and structural properties. In the present investigation, the fluence for proton irradiation was varied up to 2×1015 protons cm−2, while that for copper beam was kept in the range of 1×101 to 1×1013 ions cm−2 to study the swift heavy ion-induced modifications in LDPE. Ultraviolet–visible (UV–vis), FTIR and X-ray diffraction (XRD) techniques were utilized to study the induced changes. The analysis of UV–vis absorption studies reveals that there is decrease of optical energy gap up to 43% on proton irradiation (at 2×1015 ions cm−2), whereas the copper beam (at 1×1013 ions cm−2) leads to a decrease of 51%. FTIR analysis indicated the presence of unsaturations due to vinyl end groups in the irradiated sample. The formation of OH and CO groups has also been observed. XRD analysis revealed that the semi-crystalline LDPE losses its crystallinity on swift ion irradiation. It was found that the proton beam (2×1015 ions cm−2) decreased the crystallite size by 23% whereas this decrease is of 31% in case of the copper ion-irradiated LDPE at 1×1013 ions cm−2.  相似文献   

17.
H radicals react with chlorobenzoic acids and chlorobenzene (k(H+substrates)=(0.7–1.5)×109 dm3 mol−1 s−1) by addition to the benzene ring forming H adducts with characteristic absorption bands in the range of 310–360 nm. The rate constants for their second-order decay are 2k=(3.5–6)×108 dm3 mol−1 s−1. By reduction with eaq fragmentation and chloride release was established for 2- and 4-chlorobenzoic acid, for 3-chlorobenzoic acid the addition of electrons to the carboxylate group was observed by pulse radiolysis. By gamma radiolysis could be proved that these radical anions undergo intramolecular electron transfer and quantitave dechlorination. The efficiency in degradation was 4-chlorobenzoic acid>3-chlorobenzoic acid>2-chlorobenzoic acid. Benzoic acid was found as final product for all substrates.  相似文献   

18.
KOH activation of petroleum coke (PC) was conducted with 30 vol%H2 + 70 vol% N2 as carrier gas. TG-DTG, FTIR, elemental analysis, N2 adsorption, GC and XRD techniques were used to investigate the effects of hydrogen on the activation. During the initial stage of the activation, i.e. the carbonization of the PC, additional CH and CH2 species were formed due to the chemisorption of hydrogen on the nascent sites of the PC created by the removal of the surface heteroatom groups. The formation of the CH and CH2 species increased the quantity of ‘active sites’ which is favorable to the further activation reaction, and developed the porous structure of the activated carbons. The micropore volume and BET surface areas of the activated carbon prepared under 30 vol% H2 + 70 vol% N2 and with a relatively low KOH/PC weight ratio of 2:1 have been increased from 0.78 cm3/g and 1936 m2/g to 0.97 cm3/g and 2477 m2/g, respectively, compared to that prepared in pure N2 atmosphere with the same KOH/PC ratio.  相似文献   

19.
《Vibrational Spectroscopy》2007,43(2):330-334
Concentration dependent adsorption behaviors of 1,4-diethynylbenzene (DEB) on gold nanoparticle surfaces have been investigated by means of surface-enhanced Raman scattering (SERS). The spectral features including the multiple peaks in the ν(CC)bound stretching region were found to vary as the bulk concentration of DEB in gold nanoparticles. At a low concentration of 10−6 M, only the multiple ν(CC)bound band was conspicuous at ∼2000 cm−1 and the free CC stretching band was barely detected in the SERS spectra. When the bulk concentration was increased, the ν(CC)free band became prominent at ∼2104 cm−1. These splitting bands may provide the evidence that DEB is adsorbed on gold mainly through one of the two acetylene groups with the other CC groups being pendent with respect to the gold surface. Ab initio density functional theory (DFT) calculations of DEB were performed to check the vibrational assignment.  相似文献   

20.
Raman and infrared spectroscopy were applied for the vibrational characterization of lapachol and its pyran derivatives, α-lapachone and β-lapachone. Experimental spectra of solid state samples were acquired between 4000 and 100 cm−1 in Raman experiments, and between 4000 and 600 cm−1 (mid-infrared) and 600–100 cm−1 (far-infrared) with FTIR spectroscopy, respectively. Full structure optimization and theoretical vibrational wavenumbers were calculated at the B3LYP/6-31 + + G(d,p) level. Detailed assignments of vibrational modes in an experimental and theoretical spectra were based on potential energy distribution analyses, using Veda 4.1 software. Clear differentiation between the three compounds was verified in the region between 1725 and 1525 cm−1, in which the ν(CO) and ν(CC) modes of the quinone moiety were assigned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号