首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electronic structure of uranium and plutonium nitrides in ambient conditions and under pressure is investigated using the LDA + U + SO band method taking into account the spin–orbit coupling and the strong correlations of 5f electrons of actinoid ions. The parameters of these interactions for the equilibrium cubic structure are calculated additionally. The application of pressure reduces the magnetic moment in PuN due to predominance of the f 6 configuration and the jj-type coupling. An increase in the occupancy of the 5f state in UN leads to a decrease in the magnetic moment, which is also detected in the trigonal structure of the UN x β phase (La2O3-type structure). The theoretical results are in good agreement with the available experimental data.  相似文献   

2.
We use a simplified model to calculate the electronic band structure of compounds of the type of La1?xSrxMnO3. The model includes two nonequivalent sites for the transition metal ions as well as strong Coulomb and exchange interactions between d electrons. Using the resulting band structure we discuss the correlation between magnetic order and conductivity in these compounds.  相似文献   

3.
The electronic structure and the exchange interactions in EuNi4Co and YbNi4Co compounds have been calculated in terms of a theoretical approach with the inclusion of electronic correlations (LSDA + U method); the variants of substitution of cobalt ion for nickel in the 3d lattice in both types of crystallographic positions 2c and 3g are considered. The total energies obtained in self-consistent calculations show that individual cobalt impurities are more preferably arranged in position of the 3g type. A Co ion in RNi4Co (R = Eu, Yb) is characterized by a significant magnetic moment, which leads to significant increase in the exchange interaction of Co and Ni ions in the 3d metal sublattice.  相似文献   

4.
The 3d transition metal binary compounds have been extensively investigated for a large multi-electron redox capacity through reversible electrochemical reactions. Here, the structural, electronic and magnetic properties of CuF2 are studied by the first-principles calculations within both the generalized gradient approximation (GGA) and GGA+U frameworks. Our results show that the antiferromagnetic (AFM) configuration of CuF2 is more stable than the ferromagnetic (FM) one, which is consistent with experiments. The analysis of the electronic density of states (DOS) shows that CuF2 is a classic Mott–Hubbard insulator with a large dd type band gap, which is similar to the case of FeF3. Moreover, small spin polarizations were found on the sites of fluorin ions, which accords with a fluorin-mediated superexchange mechanism for the Cu–Cu magnetic interaction.  相似文献   

5.
An EPR study at X- and Q-band frequencies has been made on mixed metal pairs Mn2+-Cu2+ and Ni2+-Cu2+ obtained by doping the dimer complex C5H5NO CuCl2 · H2O. Available experimental data have been confirmed and extended, particularly as regards the characteristic directions of the various magnetic tensors. The qualitative behaviour of the spectra and the somewhat singular values of the magnetic parameters can be well-described on the basis of a theoretical model in which a very strong “cosine” interaction between the total electronic spins is assumed. From the model some interesting new aspects emerge, concerning the relations between pairs and single-ion EPR parameters.  相似文献   

6.
High-quality single crystals of ludwigites Cu2 MBO5 (M = Fe3+, Ga3+) have been grown, and the magnetic, resonance, and Mössbauer studies have been performed. It is established that the Cu2FeBO5 and Cu2GaBO5 compounds are antiferromagnets with Néel temperatures of 32 and 3.4 K, respectively. A model of the magnetic structure of the compounds is proposed. It is shown that the magnetic properties of the ludwigites are substantially dependent on the degree of ion distribution over crystallographic positions.  相似文献   

7.
The linear muffin-tin orbital method in the local density approximation (LDA + U) explicitly considering Coulomb correlations has been applied to calculate the electronic structure, magnetic moments, and parameters of the Heisenberg exchange interaction for cobalt ions in BaCoS2. Five solutions close in total energy with various orbital ordering of Co2+ ions and almost identical spin magnetic moments μ = 2.32μB of the Co2+ ion 3d-shell have been found. The BaCoS2 ground state can be considered as a set of energy-degenerate orbital-ordered configurations of Co2+ ions in the high-spin state.  相似文献   

8.
The structural, electronic and magnetic properties of the double perovskite Pb2FeReO6 have been studied by using the first-principles projector augmented wave (PAW) potential within the generalized gradient approximation (GGA) as well as taking into account the on-site Coulomb repulsive and exchange coupling interactions (GGA+U). The optimized crystal structure of the Pb2FeReO6 is a body-centered tetragonal (BCT) with a space group of I4/m and the lattice constants of a=b=5.59 Å and c=7.93 Å, consistent with the experimental results. The two axial transition metal and oxygen (TM–O) distances are slightly larger than the four equatorial TM–O distances and shows the existence of the Jahn–Teller structural distortion in FeO6 and ReO6 octahedra. The Fe3+ and Re5+ ions are in the states (3d5, S=5/2) and (5d2, S=1) with magnetic moments 3.929 and −0.831μB respectively and thus antiferromagnetic (AFM) coupling via oxygen between them. The half-metallic (HM) ferromagnetic (FM) nature implies a potential application of this new compound in magnetoelectronic and spintronics devices.  相似文献   

9.
First-principles calculations, by means of the full-potential augmented plane wave method using the LSDA+U approach (local spin density approximation with Hubbard-U corrections), have been carried out for the electronic structure of the Al0.75Er0.25N. The LSDA+U method is applied to the rare-earth 4? states. We have investigated the electronic and magnetic properties.The Al0.75Er0.25N is shown to be a semiconductor, where the filled ? states are located in the valence bands and the empty ones above the conduction band edge. The magnetic interaction of the rare-earth ion with the host states at the valence and conduction band edges has been investigated and discussed.  相似文献   

10.
L. Hua  J. He 《Physica B: Condensed Matter》2011,406(6-7):1222-1225
We have investigated the structural, electronic and magnetic properties of Mn3Cu1?xSnxN(x=0, 0.5) using first-principles density functional theory within the generalized gradient approximation (GGA) + U schemes. The crystal structure of the compounds is tetragonal crystal for x=0 while it is a cubic crystal for x=0.5. Our spin-polarized calculations give a metallic ground state for the x= 0, 0.5 in agreement with experiments. From the charge density and density of states(DOS), the coupling between Sn 5p with Mn 3d and spin geometrical frustration effect are the main reasons for magnetic transition in Mn3Cu1?xSnxN.  相似文献   

11.
Evolution of the electronic structure of the NpMGa5 (M = Fe, Co, Ni) series of neptunium compounds, whose crystal structure is similar to that of the known family of Pu115 superconductors, was studied by the LDA + U + SO method. The calculations took into account both the strong electron correlations and the spin?orbit coupling in the 5f shell of neptunium. For the first time, the electronic structure was calculated for a hypothetical series of compounds in which gallium is replaced with indium. Parameters of the crystal structure of the given series were obtained using the relationship between the parameters of the crystal structure of the earlier-studied compounds PuCoGa5 and PuCoIn5. The analysis of the electronic structure and characteristics of neptunium ions calculated in the framework of the LDA + U + SO method showed that the neptunium ions in NpMIn5 with M = Fe, Co, and Ni should have an electron configuration closer to f4, but a spin and magnetic characteristics close to those in NpMGa5.  相似文献   

12.
Electronic transport properties of La0.5?xBixCa0.5MnO3 (x=0, 1/16, 1/8, 1/4, 3/8 and 1/2) compounds have been studied systematically to investigate their charge ordering (CO) behaviors. The results show that the CO temperature increases with the substitution of Bi3+ ion for La3+ ion, suggesting that the charge ordering is enhanced. This is attributed to the special role of the 6s2 lone pair of Bi3+. It is found that for all the samples the adiabatic small polaronic conduction mechanism is responsible for the transport behavior above CO transition, whereas Mott's variable range hopping mechanism dominates below the CO transition. In addition, the electronic transport behavior of La0.5?xBixCa0.5MnO3 compounds is high sensitive to an external magnetic field, which could raise fresh opportunities for application in magnetic sensors.  相似文献   

13.
The structural, magnetic, electronic, vibrational, thermodynamic and elastic properties of plutonium sesquicarbide (Pu2C3) are investigated based on density functional theory. The use of the Hubbard term to describe the 5f electrons of plutonium is discussed according the lattice parameters and magnetism. The calculated lattice constants, magnetism and density of states agree well with the experimental data or other theoretical calculations. The Pu-C bonds of Pu2C3 have a mixture of covalent character and ionic character, while covalent character is stronger than ionic character. The phonon frequencies and the assignment of infrared-active, Raman-active and silent modes at Γ point are obtained. Furthermore, the enthalpy difference H-H298, entropy S, heat capacity and linear thermal expansion coefficient α of Pu2C3 have been calculated and compared with the available data. Lastly, the calculated elastic properties predict that Pu2C3 is ductile metal. In addition, the effect of spin-orbit coupling on the structural, magnetic, and electronic properties of Pu2C3 has been discussed. We hope that our results can provide a useful reference for further theoretical and experimental research on Pu2C3.  相似文献   

14.
The electronic structure of the α-phase of plutonium has been calculated by the band methods with allowance for the spin-orbit interaction and Coulomb correlations in the complete matrix form (the LDA + U + SO method). The strong spin-orbit interaction of the 5 f electrons is manifested in the splitting of the calculated density of the 5f states, which makes a small contribution at the Fermi level on the order of the contribution from the 6d states. Using the results of the ab initio calculations, the spin and orbit contributions to the magnetic susceptibility of α-plutonium have been determined. Along with the impurity contribution, they describe well the experimental data on the susceptibility of this plutonium phase to a temperature of 300 K.  相似文献   

15.
We present a detail study of the effect of excess metal atoms on the magnetic properties of Cu1+xCr2+yTe4 at 2-400 K. With the increase in x=0-1 and y<0.3, these compounds retain metallic behavior, while ferromagnetic ordering temperature reduces from 325 to 160 K. Our low field susceptibility χac measurements reveal a second transition on cooling below the ferromagnetic ordering; the transition at around 160-180 K intensifies with the excess amount of copper and chromium atoms. The value of spontaneous magnetization at 2 K remains between 2.6 and 2.9μB across all the compositions and it reduces with temperature as M(T)∼A0T3/2+A1T5/2, as expected for the excitation of Bloch's spin waves in a model of the Heisenberg ferromagnet. Our terminal composition Cu1.9Cr2.25Te4 showed only second transition at 160 K with short range magnetic order much above the transition temperature and in the absence of the specific heat jump at this temperature. The magnetic properties are explained as a result of random magnetic anisotropy in the excess-metal compositions induced by the interstitial atomic defects in their parent spinel structure. The large stuffing of cations has been made possible in the telluride compounds because of the large size of tellurium and also by the covalent bonding that stabilizes the defect structure.  相似文献   

16.
Structural and electronic properties of 3d transition metal Sc, Ti, Cr and Mn incorporated 2H-WSe2 have been systematically investigated by first-principles calculations based on density functional theory. The calculated formation energies reveal that all the doped systems are thermodynamically more favorable under Se-rich condition than W-rich condition. The geometry structures almost hold that of the pristine 2H-WSe2 albeit with slight lattice distortion. More importantly, the electronic properties have been significantly tuned by the dopants, i.e., metal and semimetal behavior has been found in Sc, Ti and Mn-doped 2H-WSe2, respectively, semiconducting nature with narrowed band gap is expected in Cr-doped case, just as that of the pristine 2H-WSe2. In particular, magnetic character is realized by incorporation of Mn impurity with a total magnetic moment of 0.96 μB. Our results suggest chemical doping is an effective way to precisely tailor the electronic structure of layered transition metal dichalcogenide 2H-WSe2 for target technological applications.  相似文献   

17.
Starting from a theoretical study of the electronic properties of the corresponding stoichiometric metal hydrides by means of an augmented plane wave band structure calculation, we present an evaluation of the electron-phonon coupling parameter λ, using the McMillan formalism. The electronic term η is calculated from first principles using the rigid ion approximation while experimental data are used to estimate the phonon contribution. From a detailed analysis of both the electron-acoustic phonon coupling and of the electron-optic phonon coupling we discuss the reasons why hydrogen kills superconductivity in the high Tc metals Nb and La. These results in conjunction with our studies of a series of metal hydrides are used to draw general conclusions and make some predictions about the possible occurrence of superconductivity in transition metal hydrides.  相似文献   

18.
We report a detailed study of a double-exchange model proposed for the molecule-based magnets. The model is applied to a two-dimensional periodic complex made of a transition metal and an organic molecule in which the electronic structure is described by effective d orbitals of the transition metal ion at infinite Hund's coupling limit and the lowest unoccupied molecular orbital of the organic molecule, π. Depending on the average electron density of the organic molecules and various superexchange couplings between metal ions' core spins, magnetic states of the complex are investigated. Performing Monte Carlo calculations on a model Hamiltonian for various electron densities of the organic molecule, the average magnetization and critical magnetic ordering temperatures are determined.  相似文献   

19.
We review the nuclear magnetic resonance (NMR) studies of the indirect nuclear exchange coupling and electronic structure of the chain and layered semiconductors Tl(I)M(III)X2 (M = Tl, Ga, In, X = Se, S, Te) and some other low-dimensional Tl-contained semiconducting compounds. Both univalent and trivalent Tl atoms in these compounds show essential chemical shielding anisotropy despite their formal spherically symmetric 5d106s2 and 5d10 electron configurations. Such a behavior results from the sp-hybridization of the Tl electron wave functions. Strong exchange coupling among the spins of Tl1+ and M3+ ions, which reside in neighboring chains or layers, is observed. Such coupling is realized due to the overlap of the Tl1+ and M3+ electron wave functions across the intervening chalcogen atom. This overlap is the important mechanism in the formation of the valence and conduction bands and determines the electronic structure and properties of the compounds. The long-range indirect nuclear exchange coupling via a chalcogen atom is an analog of the Kramers mechanism of electron spin exchange via a nonmagnetic bridge ion. Recent photoemission spectroscopy studies and band-structure calculations of several aforementioned compounds have confirmed the NMR results on the interchain and interlayer overlap.  相似文献   

20.
Intermetallic compounds involving the rare earths and a transition metal, especially iron, aroused great interest in the past twenty five years with particular attention been paid to their magnetic properties, due to the fact that these compounds have been used as a permanent magnet materials. Their study using different techniques has given new information about the mechanisms of the magnetic interactions, which are present in these compounds. Among them Mössbauer Spectroscopy (MS) has been proven to be an indispensable tool, due to the fact that information can be obtained either from the spectra of the iron sublattice or from the spectra of the rare earth sublattice. Thus information on local moments, crystal field effects, single ion anisotropy and exchange interactions can be extracted from such spectra and compared with results from other techniques. Among the best alloys for permanent magnet applications are the ones based on the Nd2Fe14B type structure. Very interesting magnetic properties are also present in the recently discovered series of RFe12?x M x , where M=V, Ti, Mo, Si. We will review their intrinsic and extrinsic magnetic properties, as they have been measured using (MS) and correlate them with the findings from other techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号