首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three peroxomanganese(III) complexes [Mn(III)(O(2))(mL(5)(2))](+), [Mn(III)(O(2))(imL(5)(2))](+), and [Mn(III)(O(2))(N4py)](+) supported by pentadentate ligands (mL(5)(2) = N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine, imL(5)(2) = N-methyl-N,N',N'-tris((1-methyl-4-imidazolyl)methyl)ethane-1,2-diamine, and N4py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) were generated by treating Mn(II) precursors with H(2)O(2) or KO(2). Electronic absorption, magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD data demonstrate that these complexes have very similar electronic transition energies and ground-state zero-field splitting parameters, indicative of nearly identical coordination geometries. Because of uncertainty in peroxo (side-on η(2) versus end-on η(1)) and ligand (pentadentate versus tetradentate) binding modes, density functional theory (DFT) computations were used to distinguish between three possible structures: pentadentate ligand binding with (i) a side-on peroxo and (ii) an end-on peroxo, and (iii) tetradentate ligand binding with a side-on peroxo. Regardless of the supporting ligand, isomers with a side-on peroxo and the supporting ligand bound in a tetradentate fashion were identified as most stable by >20 kcal/mol. Spectroscopic parameters computed by time-dependent (TD) DFT and multireference SORCI methods provided validation of these isomers on the basis of experimental data. Hexacoordination is thus strongly preferred for peroxomanganese(III) adducts, and dissociation of a pyridine (mL(5)(2) and N4py) or imidazole (imL(5)(2)) arm is thermodynamically favored. In contrast, DFT computations for models of [Fe(III)(O(2))(mL(5)(2))](+) demonstrate that pyridine dissociation is not favorable; instead a seven-coordinate ferric center is preferred. These different results are attributed to the electronic configurations of the metal centers (high spin d(5) and d(4) for Fe(III) and Mn(III), respectively), which results in population of a metal-peroxo σ-antibonding molecular orbital and, consequently, longer M-O(peroxo) bonds for peroxoiron(III) species.  相似文献   

2.
Metal-dioxygen adducts are key intermediates detected in the catalytic cycles of dioxygen activation by metalloenzymes and biomimetic compounds. In this study, mononuclear cobalt(III)-peroxo complexes bearing tetraazamacrocyclic ligands, [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+), were synthesized by reacting [Co(12-TMC)(CH(3)CN)](2+) and [Co(13-TMC)(CH(3)CN)](2+), respectively, with H(2)O(2) in the presence of triethylamine. The mononuclear cobalt(III)-peroxo intermediates were isolated and characterized by various spectroscopic techniques and X-ray crystallography, and the structural and spectroscopic characterization demonstrated unambiguously that the peroxo ligand is bound in a side-on η(2) fashion. The O-O bond stretching frequency of [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+) was determined to be 902 cm(-1) by resonance Raman spectroscopy. The structural properties of the CoO(2) core in both complexes are nearly identical; the O-O bond distances of [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+) were 1.4389(17) ? and 1.438(6) ?, respectively. The cobalt(III)-peroxo complexes showed reactivities in the oxidation of aldehydes and O(2)-transfer reactions. In the aldehyde oxidation reactions, the nucleophilic reactivity of the cobalt-peroxo complexes was significantly dependent on the ring size of the macrocyclic ligands, with the reactivity of [Co(13-TMC)(O(2))](+) > [Co(12-TMC)(O(2))](+). In the O(2)-transfer reactions, the cobalt(III)-peroxo complexes transferred the bound peroxo group to a manganese(II) complex, affording the corresponding cobalt(II) and manganese(III)-peroxo complexes. The reactivity of the cobalt-peroxo complexes in O(2)-transfer was also significantly dependent on the ring size of tetraazamacrocycles, and the reactivity order in the O(2)-transfer reactions was the same as that observed in the aldehyde oxidation reactions.  相似文献   

3.
Mononuclear nonheme MnIII‐peroxo complexes are important intermediates in biology, and take part in oxygen activation by photosystem II. Herein, we present work on two isomeric biomimetic side‐on MnIII‐peroxo intermediates with bispidine ligand system and reactivity patterns with aldehydes. The complexes are characterized with UV/Vis and mass spectrometric techniques and reaction rates with cyclohexane carboxaldehyde (CCA) are measured. The reaction gives an unusual regioselectivity switch from aliphatic to aldehyde hydrogen atom abstraction upon deuteration of the substrate, leading to the corresponding carboxylic acid product for the latter, while the former gives a deformylation reaction. Mechanistic details are established from kinetic isotope effect studies and density functional theory calculations. Thus, replacement of C?H by C?D raises the hydrogen atom abstraction barriers and enables a regioselectivity switch to a competitive pathway that is slightly higher in energy.  相似文献   

4.
A novel nonheme manganese(III)-peroxo complex bearing a proline-derived pentadentate aminobenzimidazole ligand was synthesized and spectroscopically characterized, and its reactivity in aldehyde deformylation was investigated.  相似文献   

5.
Mononuclear MnIII–peroxo and dinuclear bis(μ‐oxo)MnIII2 complexes that bear a common macrocyclic ligand were synthesized by controlling the concentration of the starting MnII complex in the reaction of H2O2 (i.e., a MnIII–peroxo complex at a low concentration (≤1 mM ) and a bis(μ‐oxo)MnIII2 complex at a high concentration (≥30 mM )). These intermediates were successfully characterized by various physicochemical methods such as UV–visible spectroscopy, ESI‐MS, resonance Raman, and X‐ray analysis. The structural and spectroscopic characterization combined with density functional theory (DFT) calculations demonstrated unambiguously that the peroxo ligand is bound in a side‐on fashion in the MnIII–peroxo complex and the Mn2O2 diamond core is in the bis(μ‐oxo)MnIII2 complex. The reactivity of these intermediates was investigated in electrophilic and nucleophilic reactions, in which only the MnIII–peroxo complex showed a nucleophilic reactivity in the deformylation of aldehydes.  相似文献   

6.
There is an intriguing, current controversy on the involvement of iron(III)-hydroperoxo species as a "second electrophilic oxidant" in oxygenation reactions by heme and non-heme iron enzymes and their model compounds. In the present work, we have performed reactivity studies of the iron-hydroperoxo species in nucleophilic and electrophilic reactions, with in situ-generated mononuclear non-heme iron(III)-hydroperoxo complexes that have been well characterized with various spectroscopic techniques. The intermediates did not show any reactivities in the nucleophilic (e.g., aldehyde deformylation) and electrophilic (e.g., oxidation of sulfide and olefin) reactions. These results demonstrate that non-heme iron(III)-hydroperoxo species are sluggish oxidants and that the oxidizing power of the intermediates cannot compete with that of high-valent iron(IV)-oxo complexes. We have also reported reactivities of mononuclear non-heme iron(III)-peroxo and iron(IV)-oxo complexes in the aldehyde deformylation and the oxidation of sulfides, respectively.  相似文献   

7.
Metal complexes of 2,5-dicarboxamidopyrroles and 2,5-dicarbothioamidopyrroles have been structurally characterised for the first time, complementing the significant amount of work that has been reported for the analogous pyridine ligands. N,N'-Bis(3,5-dinitrophenyl)-3,4-diphenyl-1H-pyrrole-2,5-dicarboxamide forms octahedral bis(tridentate) complexes with cobalt(iii) and nickel(ii), where the ligands are bound to the metal centres through deprotonated pyrrole and amide N atoms. N,N'-Dibutyl-3,4-diphenyl-1H-pyrrole-2,5-dicarboxthioamide and N,N'-diphenyl-3,4-diphenyl-1H-pyrrole-2,5-dicarboxthioamide also form bis(tridentate) cobalt complexes but are only deprotonated at the pyrrole N atom, the remainder of the coordination sphere comprising the thioamide S atoms. The dibutyl derivative was isolated as a Co(ii) complex, whereas the diphenyl system deposited a Co(iii) complex. In contrast, N,N'-dibutyl-3,4-dichloro-1H-pyrrole-2,5-dicarboxamide was found to act as a bidentate ligand, in an octahedral cobalt(ii) complex comprising of two bidentate pyrrole ligands, and two aqua ligands. Synthesis of N,N-bis(pyridin-2-ylmethyl)-3,4-diphenyl-1H-pyrrole-2,5-carboxamide gave a pyrrole ligand with increased denticity. Reaction with cobalt(ii) chloride resulted in the isolation of a dinuclear helicate complex. The ligand was found to have undergone addition of a methoxy group to one of the linking methylene carbons, presumably as a result of the oxidative addition of solvent methanol.  相似文献   

8.
The binding and activation of dioxygen by transition metal complexes is a fundamentally and practically important process in chemistry. Often the initial steps involve formation of peroxometal species that is difficult to observe because of their inherent reactivity. The interaction of dioxygen with a manganese(II) complex (1) of bis[(N'-tert-butylurealy)-N-ethyl]-(6-pivalamido-2-pyridylmethyl)amine was investigated, leading to the detection of a new intermediate that is a peroxomanganese(III) complex (2). This complex is high-spin (S = 2) with a g value of 8.2 and D = -2.0(5) as determined by parallel-mode electron paramagnetic resonance spectroscopy. The coordination of a peroxo ligand was established using Fourier transform infrared spectroscopy that reveals a new signal at 885 cm-1 for 2 when formed from 16O2-this band shifts to 837 cm-1 when 18O2 is used in the preparation. Moreover, electrospray ionization mass spectra contain a strong ion at an m/z of 576.2703 for the 16O-isotopomer that shifts to 580.2794 in the 18O-isotopomer. Complex 2 also is capable of oxidatively deformylating aldehydes, which is a known reaction of peroxometal complexes. The similarities of 2 to the peroxo intermediates in cytochrome P450 are noted.  相似文献   

9.
The reactivity of the previously reported peroxo adduct [FeIII2(μ-O2)(MeBzim-Py)4(CH3CN)2]4+ ( 1 ) (MeBzim-Py=2-(2′-pyridyl)-N-methylbenzimidazole) towards aldehyde substrates including phenylacetaldehyde (PAA), hydrocinnamaldehyde (HCA), propionaldehyde (PA), 2-phenylpropionaldehyde (PPA), cyclohexanecarboxaldehyde (CCA), and para-substituted benzaldehydes (benzoyl chlorides) has been investigated. Complex 1 proved to be a nucleophilic oxidant in aldehyde deformylation reaction. These models, including detailed kinetic and mechanistic studies, may serve as the first biomimics of aldehyde deformylating oxygenase (ADO) enzymes.  相似文献   

10.
The synthesis, isolation, and characterization of two high-valent manganese dimers with isomeric ligands are reported. The complexes are synthesized and crystallized from solutions of low-valent precursors exposed to tert-butyl hydroperoxide. The crystal structures display centrosymmetric complexes consisting of Mn(2)(IV,IV)(μ-O)(2) cores, with one ligand coordinating to each manganese. The ligands coordinate with the diaminoethane backbone, the carboxylate, and one of the two pyridines, while the second pyridine is noncoordinating. The activity of these complexes, under water oxidation conditions, is discussed in light of a proposed mechanism for water oxidation, in which this type of complexes have been suggested as a key intermediate.  相似文献   

11.
Peptide deformylase (PDF), a metalloamidase which catalyzes a deformylation step during eubacterial protein biosynthesis, shows a peculiar preference for FeII as its active site metal ion (in particular, as opposed to ZnII, which is far more common among this class of enzymes). In order to explore the origin of this preference, density functional theory (DFT) calculations have been carried out using a biomimetic heteroscorpionate N2Sthiolate ligand system (L) and the metal centers FeII, ZnII, and CoII. Comparison of computed ML(formate) complexes to crystal structures of PDF?Cformate complexes illustrates the viability of the biomimetic ligand for investigating the PDF chemistry. pKa calculations on [ML(H2O)]+ complexes show that the metal centers are effective Lewis acids in activating the water molecule to allow formation of a nucleophilic hydroxide ligand. Computed oxidation potentials predict the ML(OH) and ML(formate) complexes not to be unstable with respect to oxidation. However, while each of the metal centers was therefore seen to be suitable for PDF chemistry, examination of the entire deformylation reaction showed FeII to be uniquely suited to PDF. The deformylation reaction was thermodynamically and kinetically optimal with FeII as the metal center. This is attributed to the charge transfer that occurs from the thiolate ligand to the FeII center during the reaction and to the relative coordinative flexibility of FeII that allows for facile interconversion between tetra- and pentacoordination, leading to greater activation of the substrate carbonyl at the nucleophilic attack transition state.  相似文献   

12.
A mononuclear nonheme ferric-peroxo complex bearing a macrocyclic tetradentate N4 ligand, [(TMC)Fe(III)-O2]+, was prepared and used in mechanistic studies of aldehyde deformylation; a catalytic aldehyde deformylation by a nonheme iron(II) complex, [Fe(II)(TMC)]2+, and molecular oxygen is reported as well.  相似文献   

13.
CYP125 from Mycobacterium tuberculosis catalyzes sequential oxidation of the cholesterol side-chain terminal methyl group to the alcohol, aldehyde, and finally acid. Here, we demonstrate that CYP125 simultaneously catalyzes the formation of five other products, all of which result from deformylation of the sterol side chain. The aldehyde intermediate is shown to be the precursor of both the conventional acid metabolite and the five deformylation products. The acid arises by protonation of the ferric-peroxo anion species and formation of the ferryl-oxene species, also known as Compound I, followed by hydrogen abstraction and oxygen transfer. The deformylation products arise by addition of the same ferric-peroxo anion to the aldehyde intermediate to give a peroxyhemiacetal that leads to C-C bond cleavage. This bifurcation of the catalytic sequence has allowed us to examine the effect of electron donation by the proximal ligand on the properties of the ferric-peroxo anion. Replacement of the cysteine thiolate iron ligand by a selenocysteine results in UV-vis, EPR, and resonance Raman spectral changes indicative of an increased electron donation from the proximal selenolate ligand to the iron. Analysis of the product distribution in the reaction of the selenocysteine substituted enzyme reveals a gain in the formation of the acid (Compound I pathway) at the expense of deformylation products. These observations are consistent with an increase in the pK(a) of the ferric-peroxo anion, which favors its protonation and, therefore, Compound I formation.  相似文献   

14.
Syntheses, structures, and antimicrobial activities of cobalt(III) complexes with two tetradentate Schiff-base ligands, (BA)2en?=?bis(benzoylacetone)ethylenediimine dianion and (acac)2en?=?bis(acetylacetone)ethylenediimine dianion, and two axial pyridines (py) have been investigated. These complexes were characterized by FT-IR, 1H-NMR, UV-Vis spectroscopy, and elemental analysis. The crystal structures of the complexes were determined by X-ray crystallography. Single-crystal X-ray diffraction analyses revealed that both complexes have distorted octahedral environments, Schiff-base ligand coordinates cobalt in four equatorial positions, and the two axial positions are occupied by pyridines. The pyridines and Schiff-base ligands are involved in N–H···O hydrogen bonds with perchlorate. Biological activities of the ligands and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, and Bacillus subtilis by the well diffusion method. The activity data show the metal complexes to be more potent than the parent ligand against two bacterial species.  相似文献   

15.
A mononuclear nonheme cobalt(III) iodosylbenzene complex, [CoIII(TQA)(OIPh)(OH)]2+ ( 1 ), is synthesized and characterized structurally and spectroscopically. While 1 is a sluggish oxidant in oxidation reactions, it becomes a competent oxidant in oxygen atom transfer reactions, such as olefin epoxidation, in the presence of a small amount of proton. More interestingly, 1 shows a nucleophilic reactivity in aldehyde deformylation reaction, demonstrating that 1 has an amphoteric reactivity. Another interesting observation is that 1 can be used as an oxygen atom donor in the generation of high‐valent metal‐oxo complexes. To our knowledge, we present the first crystal structure of a CoIII iodosylbenzene complex and the unprecedented reactivity of metal‐iodosylarene adduct.  相似文献   

16.
《Polyhedron》2001,20(15-16):1973-1982
2,6-Disubstituted pyridines, where the substituents are aldehyde, ketone or ester functions, form bidentate chelate complexes with the transition metal moieties fac-ReIX(CO)3 (X=halogen). 2-Substituted pyridines, where the substituents are aldehyde or ester functions, form similar types of complexes with the isoelectronic transition metal moieties fac-ReIX(CO)3 and PtIVXMe3. The fac-ReIX(CO)3 complexes of the 2,6-disubstituted pyridine ligands were shown by 1H NMR spectra to undergo metallotropic shifts whereby the Re coordination switches between adjacent ON pairs of the ONO ligand donor set. Rates and activation energies of these fluxional shifts were measured by dynamic NMR bandshape analysis. Magnitudes of ΔG3 (298.15 K) were in the range 59–64 kJ mol−1 for the diketone and diester ligands. The dialdehyde ligand, 2,6-pyridinedicarboxaldehyde, formed an appreciably less-stable ReI complex that was highly fluxional and showed a tendency to dissociation at ambient solution temperatures. The unsymmetrical diester ligand, methylethyldipicolinate, formed two distinct ReI complex species in solution, in the approximate abundance ratio of 2:1, the more abundant structure involving coordination to the carbonyl of the ethyl ester function. This particular complex forms exclusively in the solid state and an X-ray crystal structure of [ReBr(CO)3L] (L=methylethyldipicolinate) is reported.  相似文献   

17.
Quinoline-based, tetradentate nitrogen ligands, N,N'-bis(2-quinolylmethyl)-N,N'-dialkyl-1,2-ethanediamine (alkyl = methyl, bqdmen; ethyl, bqdeen; isopropyl, bqdpen), have been investigated as the supporting ligands for the formation of bis(micro-oxo) dinuclear manganese complexes. Bis(micro-oxo)Mn(2)(iii,iii) complexes and were obtained for bqdmen and bqdeen, respectively, as evidenced by X-ray crystallography, whereas bqdpen did not afford any manganese complexes due to its steric bulk. Complexes and exhibit highly positive Mn(2)(iii,iii)/Mn(2)(iii,iv) and Mn(2)(iii,iv)/Mn(2)(iv,iv) redox couples relative to the corresponding pyridine-ligated (micro-O)(2)Mn(2)(iii,iii) complexes.  相似文献   

18.
The cleavages of some new optically active complexes containing CoSi (orGe), MnSi (orGe), ReGe and WGe bonds are described. Electrophiles cleave the CoSi bond with good retention of configuration at silicon, while the MnSi bond is not cleaved under the same conditions. The M′Si and M′Ge bonds (where M'  transition metal) are cleaved by nucleophiles with retention or inversion of configuration. In the case of triginal bipyramidal geometry (cobalt complexes) the stereochemical outcome of the reaction is strongly dependent upon electronic effects, the size of the ligand trans to the CoSi (orGe) bond, and the nature of the nucleophilic reagant, in accord with the general rules for nucleophilic substitution at silicon. In contrast the transition metalsilicon orgermanium bonds in the octahedral complexes of manganese, rhenium and tungsten are always cleaved with poor retention of configuration regardless of the nature of the ligands or the nucleophilic reagent. The results provide the first cases in which the stereochemistry of nucleophilic displacement at silicon is independent of the electronic features of both the leaving group and the nucleophile.  相似文献   

19.
Thermodynamic data on complex formation between nitrogen donor ligands (amines, pyridines) and group 11 monovalent ions in water and non-aqueous media are reviewed here. Particular emphasis is paid to Ag(I) complex formation in water and dimethylsulfoxide (DMSO), due to the amount and quality of data available. The influence of different basicities and steric properties of ligands, together with the solvation of the species involved, on the stability and nature of the resulting complexes is discussed. It emerges generally that the coordination properties of amines towards 1+ ions are all modulated through the number and basicity of nitrogen atoms present in the ligand, chelate ring sizes, degree of N-functionalisation, and the nature of the solvent. When possible, the thermodynamic properties of the complexes are related to the structural features of the ligands.  相似文献   

20.
Manganese complexes of the ligand HphoxCOOR (R=H or Me) have been synthesized and characterized by X-ray analysis, ESI-MS, ligand-field spectroscopy, electrochemistry, and paramagnetic 1H NMR. The ligands, chirally pure or racemic, influence the structures of the complexes formed. Manganese(III) complexes of the ligand HphoxCOOMe are square-pyramidal or octahedral with two ligands bound in a trans fashion in the solid state. The racemic ligand (RS-HphoxCOOMe) as well as the enantiopure ligand (R-HphoxCOOMe) forms manganese complexes with similar solid-state structures. Ligand-exchange reactions occur in solution giving rise to meso complexes as confirmed by ESI-MS and deuteration studies. The manganese(III) complex of R-HphoxCOOH is octahedral, with two dianionic ligands bound in a fac-cct fashion in a tridentate manner. The manganese(III) complex of RS-HphoxCOOH is also octahedral with two dianionic ligands now bound in a trans fashion in a didentate manner and with two water molecules occupying axial sites. The paramagnetic 1H NMR spectra of the complexes have been interpreted on the basis of the relaxation times with the help of the inversion-recovery pulse technique. The binding of imidazole with the metal center depends on the chirality of the ligands in the metal complexes of HphoxCOOMe. Imidazole coordination was found to occur with the metal complex that contains two ligands with the same chirality (R and R) (R-1), while no imidazole coordination was found upon reaction with the metal complex that contains two ligands with opposite chirality (R and S) (RS-1). Epoxidation reactions of various alkenes with H2O2 as the oxidant reveal that the complexes give turnover numbers in the range of 10-35, the epoxide being the major product. The catalytic activity depends on the additives used, and a clear base effect is observed. The turnover numbers have been found to be higher in the complexes where no binding of N-Meim is observed. The latter fact unambiguously shows that imidazole binding is not a prerequisite for higher turnover numbers, in contrast to the Mn-Schiff base catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号