首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The uptake and adsorption enthalpy of carbon dioxide at 0.2 bar have been studied in three different topical porous MOF samples, HKUST-1, UiO-66(Zr), and MIL-100(Fe), after having been pre-equilibrated under different relative humidities (3, 10, 20, 40%) of water vapor. If in the case of microporous UiO-66, CO(2) uptake remained similar whatever the relative humidity, and correlations were difficult for microporous HKUST-1 due to its relative instability toward water vapor. In the case of MIL-100(Fe), a remarkable 5-fold increase in CO(2) uptake was observed with increasing RH, up to 105 mg g(-1) CO(2) at 40% RH, in parallel with a large decrease in enthalpy measured. Cycling measurements show slight differences for the initial three cycles and complete reversibility with further cycles. These results suggest an enhanced solubility of CO(2) in the water-filled mesopores of MIL-100(Fe).  相似文献   

2.
A robust and highly water stable series of UiO-66-drived MOFs including UiO-66-NH2, glycidyl methacrylate functionalized UiO-66-NH2 (UiO-66-GMA) and ethylenediamine functionalized UiO-66-NH2 (UiO-66-EDA) were synthesized solvothermally and studied their adsorption performances toward two anti-cancer drugs, methotrexate (MTX) and curcumin (CUR) in the case of overdose. It was found that functionalizing the surface of UiO-66-NH2 nanoparticles with different functional groups remarkably changes the adsorption capacity and the ideal adsorption selectivity of MTX over CUR. Particularly, the UiO-66-EDA exhibited the highest adsorption capacities for both drugs, 540.78 and 423.85 mg/g for MTX and CUR, respectively, because of the strong interaction between drug molecules and adsorbent via hydrogen bonding due to the existence of different polar functional groups. The kinetics of drugs adsorption was investigated by three well-known kinetic models, which the output indicates that the adsorption of both drugs onto the synthesized MOFs follow the pseudo-second-order model. Moreover, it was found that the equilibrium adsorption results were well fitted with the Langmuir isotherm models, revealing that the adsorption of both drugs onto the synthesized MOFs is a monolayer adsorption process. Further investigation illustrated that the synthesized MOFs could be easily activated and reused after four successive adsorption–desorption cycles. The output of the present work is of main important for biomedical and environmental applications of MOFs as an outstanding adsorbent for adsorption removal of hazardous drugs from contaminated aqueous solutions.  相似文献   

3.
The adsorption of hydrogen in MOFs takes place mainly close to the inorganic secondary building unit (IBU). The adsorption capacities on MIL-88, UiO-66, MIL-47 and MFU-1 were investigated. Quantum chemical calculations at the ab initio HF/MP2 theoretical level were employed to estimate the maximum uptake of H(2) molecules per metallic centre. Extrapolating the results on small clusters to the unit cell of each particular MOF, the H(2) uptakes (gravimetric and volumetric) were estimated. The loading of hydrogen per metal atom (H(2) molecules/M-atom) and the density of metal atoms (M-atoms ?(-3)) were defined as useful parameters to assess hydrogen storage properties and to estimate the optimum density that the material should have to be a good H(2) adsorbent. It was found that values above 3 H(2) molecules/M-atom and around 0.004 M-atoms ?(-3) for MOFs with densities around 0.7-1.0 g cm(-3) are required to reach the 2015 storage targets.  相似文献   

4.
利用高稳定性的UiO-66系列金属有机骨架多孔材料制备金属有机气凝胶材料, 制得的UiO-66系列金属有机气凝胶材料具有多级孔结构和较高的比表面积, 在气体吸附分离领域具有较大应用潜力. 气体吸附实验结果表明, UiO-66-NH2金属有机气凝胶材料具有极佳的CO2吸附性能和CO2/CH4分离性能, 通过理想吸附溶液理论计算得出其吸附选择性高达18.3.  相似文献   

5.
In our study, we show by solid-state (15)N NMR measurements that an important zirconium metal-organic framework (UiO-66) with amino-functionalized links is composed of a mixture of amino and -NH(3)(+)Cl(-) salt functionalities rather than all amino functionality to give a composition of Zr(6)O(4)(OH)(4)(BDC-NH(2))(4)(BDC-NH(3)(+)Cl(-))(2) (UiO-66-A). UiO-66-A was postsynthetically modified to form a mixture of three functionalities, where the hemiaminal functionality is the majority species in UiO-66-B and aziridine is the majority functionality in UiO-66-C. UiO-66-A-C are all porous with surface areas ranging from 780 to 820 m(2)/g and have chemical stability, as evidenced by reversible ammonia uptake and release showing capacities ranging from 134 to 193 cm(3)/g.  相似文献   

6.
以三氟乙酰基和五氟丙酰基为修饰官能团,通过合成后修饰(PSM)的方法对金属-有机骨架(MOFs)改性,得到疏水骨架材料(UiO-66-F1和UiO-66-F2)。2个骨架材料均显示出亲油性,这说明它们是油性溶剂潜在的吸附材料。修饰后MOFs材料的结晶性、稳定性和多孔性较UiO-66-NH2仅有微小降低。UiO-66-F1和UiO-66-F2的Brunauer-Emmett-Teller(BET)比表面积分别为810和610 m2·g-1。骨架材料因其合适的孔大小和疏水微环境,更容易吸附水中的有机污染物。此外,改性后材料对多种有机溶剂的吸附量显著提升,在经过10次的循环吸附后吸附量没有明显降低,具有出色的循环稳定性。  相似文献   

7.
A series of porous Zr oxoclusters-based MOFs was computationally explored for their gas storage/capture performances. The highly porous UiO-67(Zr) and UiO-68(Zr) solids show exceptionally high CH(4) and CO(2) adsorption capacities under operating conditions that make these thermal, water and mechanical resistant materials very promising for physisorption-based processes.  相似文献   

8.
制备了多种金属-有机骨架(MOF)材料,采用浸渍-化学还原法制备了非晶态Ru-B/MOF催化剂,考察了它们在苯部分加氢反应中的催化性能.催化性能评价结果表明,这些催化剂的初始反应速率(r0)顺序为Ru-B/MIL-53(Al)Ru-B/MIL-53(Al)-NH2Ru-B/UIO-66(Zr)Ru-B/UIO-66(Zr)-NH2Ru-B/MIL-53(Cr)Ru-B/MIL-101(Cr)Ru-B/MIL-100(Fe),环己烯初始选择性(S0)顺序为Ru-B/MIL-53(Al)≈Ru-B/MIL-53(Cr)Ru-B/UIO-66(Zr)-NH2Ru-B/MIL-101(Cr)Ru-B/MIL-53(Al)-NH2Ru-B/UIO-66(Zr)≈Ru-B/MIL-100(Fe).催化性能最好的Ru-B/MIL-53(Al)催化剂上的r0和S0分别为23 mmol·min-1·g-1和72%.采用多种手段,对催化性能差异最为显著的Ru-B/MIL-53(Al)和Ru-B/MIL-100(Fe)催化剂的物理化学性质进行了表征.发现MIL-53(Al)载体能够更好地分散Ru-B纳米粒子,粒子的平均尺寸为3.2 nm,而MIL-100(Fe)载体上Ru-B纳米粒子团聚严重,粒径达46.6 nm.更小的粒径不仅能够提供更多的活性位,而且也有利于环己烯选择性的提高.对Ru-B/MIL-53(Al)催化剂的反应条件进行了优化,在180°C和5 MPa的H2压力下,环己烯得率可达24%,展示了MOF材料用作苯部分加氢催化剂载体的良好前景.  相似文献   

9.
The recently discovered UiO-66/67/68 class of isostructural metallorganic frameworks (MOFs) [J. H. Cavka et al. J. Am. Chem. Soc., 2008, 130, 13850] has attracted great interest because of its remarkable stability at high temperatures, high pressures and in the presence of different solvents, acids and bases [L. Valenzano et al. Chem. Mater., 2011, 23, 1700]. UiO-66 is obtained by connecting Zr(6)O(4)(OH)(4) inorganic cornerstones with 1,4-benzene-dicarboxylate (BDC) as linker resulting in a cubic MOF, which has already been successfully reproduced in several laboratories. Here we report the first complete structural, vibrational and electronic characterization of the isostructural UiO-67 material, obtained using the longer 4,4'-biphenyl-dicarboxylate (BPDC) linker, by combining laboratory XRPD, Zr K-edge EXAFS, TGA, FTIR, and UV-Vis studies. Comparison between experimental and periodic calculations performed at the B3LYP level of theory allows a full understanding of the structural, vibrational and electronic properties of the material. Both materials have been tested for molecular hydrogen storage at high pressures and at liquid nitrogen temperature. In this regard, the use of a longer ligand has a double benefit: (i) it reduces the density of the material and (ii) it increases the Langmuir surface area from 1281 to 2483 m(2) g(-1) and the micropore volume from 0.43 to 0.85 cm(3) g(-1). As a consequence, the H(2) uptake at 38 bar and 77 K increases from 2.4 mass% for UiO-66 up to 4.6 mass% for the new UiO-67 material. This value is among the highest values reported so far but is lower than those reported for MIL-101, IRMOF-20 and MOF-177 under similar pressure and temperature conditions (6.1, 6.2 and 7.0 mass%, respectively) [A. G. Wong-Foy et al. J. Am. Chem. Soc., 2006, 128, 3494; M. Dinca and J. R. Long. Angew. Chem., Int. Ed., 2008, 47, 6766]. Nevertheless the remarkable chemical and thermal stability of UiO-67 and the absence of Cr in its structure would make this material competitive.  相似文献   

10.
Zirconium-based MOFs of the UiO family have attracted considerable attention due to their high thermal,chemical and mechanical stability. With the aim of further exploring the applications of zirconium-based UiO-66 in acid-catalyzed reactions and elucidating the effects of the defects in UiO-66 materials on their catalytic performances, in this work, a series of zirconium-containing UiO-66 samples were synthesized by varying the synthesis temperatures and BDC/Zr(terephthalic acid/ZrCl_4) ratios in the synthesis system.The synthesized UiO-66 samples were characterized by X-ray diffraction(XRD), N_2 adsorption-desorption,scanning electron microscopy(SEM), thermogravimetrical analysis(TGA), temperature-programmed desorption of NH_3(NH_3-TPD). Their catalytic performances were investigated in transesterification of tributyrin and soybean oil with methanol. The results showed that UiO-66 samples with different amounts of defects could be successfully prepared by varying the synthesis temperatures and/or the BDC/Zr ratios used in the synthesis system. The catalytic activities of the UiO-66 materials greatly depended on their linker defects and enhanced with the increase of the defect amount. The UiO-66 was an efficient catalyst for transesterification of tributyrin and soybean oil with methanol under mild reaction conditions and its catalytic activity was comparable to other solid acid catalysts reported in the literatures. The UiO-66 catalyst was relatively stable and could be reused.  相似文献   

11.
Biology has evolved excellent spatial structures for high-selectivity and high-affinity capture of heavy metals. Inspired by the spatial structure of the superb-uranyl binding protein SUP, we mimic the spatial structure of SUP in metal–organic frameworks (MOFs). The MOF UiO-66-3C4N fabricated by introducing 4-aminoisophthalic acid into UiO-66 shows high uranyl adsorption capacity both in simulated seawater and in natural seawater. In natural seawater, UiO-66-3C4N exhibits 17.03 times higher uranium extraction capacity than that of vanadium, indicating the high selectivity of the adsorbent. The EXAFS analysis and DFT calculation reveal that UiO-66-3C4N forms smaller nano-pocket for uranyl capture than that of SUP protein, which can both restrict the entrance of the other interfering ions with larger size and reinforce the binding by increasing the coordination interaction, and therefore qualify the nano-pocket with high affinity and high selectivity to uranyl.  相似文献   

12.
Metal-organic frameworks (MOFs) are novel porous materials that have been extensively used in sensors, catalysis, gas storage and separation, and drug deliver owing to their adjustable pore size, large surface area and high porosity. Among diverse MOFs, UiO-66 can be a promising carrier for drug delivery due to high porosity and chemical stability. However, the adsorption mechanism of drugs in UiO-66 has not been identified and need a further investigation. Hence, we utilized molecular dynamic (MD) simulation to investigate the adsorption mechanism of UiO-66 as drug carriers. The MD simulation of UiO-66 exhibits the busulfan loading of 80 %, ibuprofen of 20 % and 5-fluorouracil of 30 %, respectively. We also demonstrated that the host-guest interaction between UiO-66 and drugs is dominated by the Van der Waals force. UiO-66 shows the highest affinity for busulfan compared with ibuprofen and 5-fluorouracil. In addition, it is certified the linear relation between the adsorption atoms and the interaction energy, which could help us to predict the interaction energy between drugs and UiO-66 by the contact atoms.  相似文献   

13.
Zhao  Qianqian  Zhang  Liuxue  Wang  Xiulian  Jia  Xu  Xu  Panpan  Zhao  Meiyan  Dai  Ruikun 《Transition Metal Chemistry》2019,44(8):789-797
Transition Metal Chemistry - Here, we prepared a series of Fe-based metal organic frameworks (MOFs), including MIL-53(Fe), NH2-MIL-53(Fe), MIL-88B(Fe) and NH2-MIL-88B(Fe), via an oil bath process...  相似文献   

14.
Flexible nanoporous chromium or iron terephtalates (BDC) MIL-53(Cr, Fe) or M(OH)[BDC] have been used as matrices for the adsorption and in vitro drug delivery of Ibuprofen (or alpha- p-isobutylphenylpropionic acid). Both MIL-53(Cr) and MIL-53(Fe) solids adsorb around 20 wt % of Ibuprofen (Ibuprofen/dehydrated MIL-53 molar ratio = 0.22(1)), indicating that the amount of inserted drug does not depend on the metal (Cr, Fe) constitutive of the hybrid framework. Structural and spectroscopic characterizations are provided for the solid filled with Ibuprofen. In each case, the very slow and complete delivery of Ibuprofen was achieved under physiological conditions after 3 weeks with a predictable zero-order kinetics, which highlights the unique properties of flexible hybrid solids for adapting their pore opening to optimize the drug-matrix interactions.  相似文献   

15.
Iron-sulfur clusters containing a singly or doubly NH.S hydrogen-bonded arenethiolate ligand, [Fe(4)S(4)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), [Fe(4)S(4){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), [Fe(2)S(2)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), and [Fe(2)S(2){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), were synthesized as models of bacterial [4Fe-4S] and plant-type [2Fe-2S] ferredoxins. The X-ray structures and IR spectra of (PPh(4))(2)[Fe(4)S(4){S-2,6-(CH(3)CONH)(2)C(6)H(3)}(4)].2CH(3)CN and (NEt(4))(2)[Fe(2)S(2){S-2,6-(t-BuCONH)(2)C(6)H(3)}(4)] indicate that the two amide NH groups at the o,o'-positions are directed to the thiolate sulfur atom and form double NH.S hydrogen bonds. The NH.S hydrogen bond contributes to the positive shift of the redox potential of not only (Fe(4)S(4))(+)/(Fe(4)S(4))(2+) but also (Fe(4)S(4))(2+)/(Fe(4)S(4))(3+) in the [4Fe-4S] clusters as well as (Fe(2)S(2))(2+)/(Fe(2)S(2))(3+) in the [2Fe-2S] clusters. The doubly NH.S hydrogen-bonded thiolate ligand effectively prevents the ligand exchange reaction by benzenethiol because the two amide NH groups stabilize the thiolate by protection from dissociation.  相似文献   

16.
A new dimethyl-functionalized UiO-66 framework exhibits higher physicochemical stability, larger CO(2) uptake, and an enhanced heat of adsorption in comparison with what was previously observed for analogous UiO-66 type MOFs.  相似文献   

17.
Constructing continuous proton transfer channels used metal-organic frameworks (MOFs), which can effectively improve proton conductivity of proton exchange membrane, have recently attracted a lot of attentions. MOFs have relatively harsh operating environment in phosphoric acid-doped (PA-doped) high-temperature proton exchange membranes (HTPEMs). However, there are few reports on the stability and state of MOFs in HTPEMs after PA doping. In this work, a series of MOFs (UIO-66, UIO-66-COOH, UIO-66-NH2, UIO-66-SO3H, MIL-101(Cr), and MIL-53(Al)) are selected to investigate their stability via simulating the operating environment for the first time. Composite membranes based on the MOFs are prepared to explore the influence of the stability and state of MOFs on HTPEMs properties. These results indicate that proton transfer channels are constructed in two different styles. After soaking in PA of UIO-66, UIO-66-COOH, MIL-101(Cr), and MIL-53(Al) at 160 °C, metal ions leave the ligands and dissolve, while the ligands are kept in the membranes. These ligands can provide proton transport sites in the membranes and help to construct proton transfer channels. UIO-66-NH2 and UIO-66-SO3H are dissolved completely in PA, leading to continuous nanopores. The proton transfer channels are constructed using the nanopores. From the results, we can infer that constructing proton transfer channels is an effectively method to improve the membranes performance, but the transmission mechanism needs to be revealed carefully.  相似文献   

18.
The structure transition of flexible MOF (MIL-53) can be adjusted by confinement of BNH(x) into MIL-53 channels. Hydrogen and carbon dioxide adsorption properties are also improved by incorporating BNH(x). At 77 K and 1 atm pressure hydrogen storage capacity can reach 2.0 wt% and CO(2) adsorption capacity is 4.5 mmol g(-1) at 273 K 1 atm.  相似文献   

19.
A model able to describe the effect of structural changes in the adsorbent or adsorbed phase during the dynamic (breakthrough) separation of mixtures on metal-organic frameworks (MOFs) is presented. The methodology is exemplified for a few pertinent case studies: the separation of xylene isomers and ethylbenzene on the flexible MOF MIL-53 and the rigid MOF MIL-47. At low pressures, no preferential adsorption of any component occurs on both MOFs. Contrarily, at higher pressures separation of ethylbenzene (EB) from o-xylene (oX) occurs on MIL-53 as a result of the breathing phenomenon within the MIL-53 structure. The increase in selectivity, starting from the gate-opening pressure, could be modeled by using a pressure-dependent saturation capacity for the most strongly adsorbed component oX. In the separation of m-xylene (mX) from p-xylene (pX) on the rigid MOF MIL-47, separation at higher pressures is a result of preferential stacking of pX. Here, the selectivity increases once the adsorption of pX switches from a single to a double file adsorption. By implementing a loading dependent adsorption constant for pX, the different unconventional breakthrough profiles and the observed selectivity profile on MIL-47 can be simulated. A similar methodology was used for the separation of EB from pX on MIL-47, where the separation is a result from steric constraints imposed onto the adsorption of EB.  相似文献   

20.
Composite materials based on titania nanoparticles (TiO2 NPs) and three metal-organic frameworks (MOFs) called MIL-53 (Fe) ((Fe (III) (OH) (1,4-BDC)), MILs (Materials Institute Lavoisier)), MIL-100 (Fe) (Fe3O(H2O)2OH(BTC)2), and Fe-BTC (iron-benzenetricarboxylate) with different percentages of TiO2 NPs (0.5, 1, and 2.5% wt.) were synthesized using the solvothermal method and used as photocatalytic materials in the degradation of two dyes (Orange II and Reactive Black 5 (RB5)). The pristine and composite materials were characterized with X-ray diffraction, Raman, UV–Vis and Fourier transform infrared spectroscopy and scanning electron microscopy techniques. The 2.5TiO2/MIL-100 composite material showed the best results for the degradation of both dyes (Reactive Black 5 and Orange II dye, 99% and 99.5% degradation in 105 and 150 min, respectively). The incorporation of TiO2 NPs into MOFs can decrease the recombination of the change carrier in the MOF, increasing the photocatalytic activity of a pristine MOF. Results therefore indicated that the synthesized MOF nanocomposites have good potential for wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号