首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
A series of liquid crystalline (LC) polysiloxanes containing diosgeninyl and menthyl groups (from monomers M1 and M2, respectively) were synthesized. The chemical structures of the monomers and polymers obtained were confirmed by elemental analysis, Fourier transform infrared spectroscopy, proton NMR and carbon-13 NMR. The LC properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction. Monomer M1 showed cholesteric oily-streak and spiral textures. Copolymers P2-P5 exhibited cholesteric phases. With increasing concentration of M2 units, the glass transition and clearing temperatures decreased. Experimental results demonstrated that a flexible polymer backbone and a long flexible spacer tended to favour a lower glass transition temperature, higher thermal stability, and wider mesophase temperature range.  相似文献   

2.
In this work we prepared a nematic monomer (4'-allyloxybiphenyl 4'-ethoxybenzoate, M1), a chiral crosslinking agent (isosorbide 4-allyloxybenzoyl bisate, M2) and a series of new side chain cholesteric liquid crystalline elastomers derived from M1 and M2. The chemical structures of the monomers and polymers were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X-ray diffraction. The effect of the content of the crosslinking unit on phase behaviour of the elastomers is discussed. Polymer P1 showed a nematic phase, P2-P7 showed a cholesteric phase; P6 formed a blue Grandjean texture over a broad temperature range 145-209.6°C, with no changed on the cooling. Polymers P4-P7, with more than 6 mol % of chiral crosslinking agent, gave rise to selective reflection. Elastomers containing less than 15 mol % of the crosslinking units displayed elasticity, reversible phase transition with wide mesophase temperature ranges, and high thermal stability. Experimental results demonstrated that, with increasing content of crosslinking agent, the glass transition temperatures first fell and then increased; the isotropization temperatures and mesophase temperature ranges decreased.  相似文献   

3.
A series of new side chain cholesteric liquid crystalline elastomers (P-2-P-6) containing the nematic crosslinking monomer 4-(10-undecen-1-yloyloxy)benzoyl-4'-allyloxybenzoyl-p-benzenediol bisate (M-1) and the cholesteric monomer 4-cholesteryl 4-(10-undecen-1-yloyloxy)benzoate (M-2) were synthesized. The chemical structures of the monomers and elastomers obtained were confirmed by FTIR and 1H NMR spectroscopy. Their liquid crystalline properties and phase behaviour were investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction. The effect of the crosslinking units on phase behaviour is discussed. Elastomers containing less than 20 mol % of the crosslinking units showed elasticity, reversible phase transitions and cholesteric Grandjean texture. The experimental results demonstrated that the glass transition and isotropization temperatures of P-2-P-6 increased with the increasing concentration of crosslinking unit M-1.  相似文献   

4.
A series of new chiral smectic liquid crystalline elastomers was prepared by graft polymerization of a nematic monomer with a chiral and non‐mesogenic crosslinking agent, using polymethylhydrosiloxane as backbone. The chemical structures of the monomers and polymers obtained were confirmed by FTIR and 1H NMR. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. Monomer M 1 showed a nematic phase during heating and cooling. Polymer P 0 exhibited a smectic B phase; elastomers P 1P 3 showed the smectic A phase, P 4P 6 showed a chiral smectic C(SmC*), and P 7 displayed stress‐induced birefringence. Elastomers containing less than 15?mol?% M 2 displayed elasticity, reversible phase transitions with wide mesophase temperature ranges, and high thermal stability. With increasing content of the crosslinking unit, glass transition temperatures first increased, then fell, then increased again; isotropization temperatures and mesophase temperature ranges steadily decreased.  相似文献   

5.
In this work the new-style nematic monomer M1 , chiral crosslinking reagent MC and a series of new side-chain cholesteric liquid crystalline elastomers derived from M1 and MC were prepared. The effect of the content of the chiral crosslinking unit on phase behaviour of the elastomers has been discussed. Polymer P1 showed nematic phase, P2 P7 showed cholesteric phase, P3 formed Grandjean texture in the heating cycle and turned out a blue Grandjean texture in the cooling cycle, P2 P3 with less than 6 mol% of chiral crosslinking agent gave rise to selective reflection. The elastomers containing less than 15 mol% of the crosslinking units displayed elasticity, reversible phase transition and high thermal stability. Experimental results demonstrated that the glass transition temperatures reduced first and then increased, and the isotropisation temperatures and the mesophase temperature ranges decreased with increasing content of crosslinking unit.  相似文献   

6.
In this work we prepared a nematic monomer (4′‐allyloxybiphenyl 4′‐ethoxybenzoate, M1 ), a chiral crosslinking agent (isosorbide 4‐allyloxybenzoyl bisate, M2 ) and a series of new side chain cholesteric liquid crystalline elastomers derived from M1 and M2 . The chemical structures of the monomers and polymers were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. The effect of the content of the crosslinking unit on phase behaviour of the elastomers is discussed. Polymer P1 showed a nematic phase, P2 P7 showed a cholesteric phase; P6 formed a blue Grandjean texture over a broad temperature range 145–209.6°C, with no changed on the cooling. Polymers P4 P7 , with more than 6?mol?% of chiral crosslinking agent, gave rise to selective reflection. Elastomers containing less than 15?mol?% of the crosslinking units displayed elasticity, reversible phase transition with wide mesophase temperature ranges, and high thermal stability. Experimental results demonstrated that, with increasing content of crosslinking agent, the glass transition temperatures first fell and then increased; the isotropization temperatures and mesophase temperature ranges decreased.  相似文献   

7.
The heat capacity of the metallomesogen purple cobalt stearate Co(O2CC17H35)2 has been measured by adiabatic calorimetry at temperatures between 16 and 420 K. This compound exhibits two crystalline phases (low temperature Cr2 and high temperature Cr1 phases), mesophase (M phase), and isotropic liquid (I phase). A third crystalline phase Cr3, which is entirely metastable with respect to all the others, is suggested by DSC studies. The Cr2-to-Cr1, Cr1-to-M, and M-to-I phase transitions occurred at 362.1, 380.9, and 400.4 K, respectively. The enthalpy and entropy gains at these phase transitions were determined. The mesophase is either smectic A or nematic.  相似文献   

8.
We investigated the pyroelectric and piezoelectric effects of new smectic C* liquid crystalline elastomers. The materials are made up of a flexible polysiloxane backbone bearing chiral mesogenic side groups and are cross-linked via alkylene chains. The polar structure of the mesophase is evidenced by the observation of piezoelectric and pyroelectric effects. Integration of the pyroelectric coefficient over the whole smectic C* stability range allows the determination of the spontaneous polarization (PS = 3–6 nC/cm2). Due to the rubber elasticity, these materials exhibit a high piezoelectric response. The piezosignal at room temperature does not vanish after annealing at temperatures even much higher than the Curie point. The piezoelectric coefficient d31 ranges from 0.5 pC/N for non-poled samples to 2.5 pC/N after application of a poling field.  相似文献   

9.
A series of new side‐chain cholesteric elastomers derived from cholesteryl 4‐(10‐undecylen‐1‐yloxy)‐4′‐ethoxybenzoate and phenyl 4,4′‐bis(10‐undecylen‐1‐yloxybenzoyloxy‐p‐ethoxybenzoate) was synthesized. The chemical structures of the monomers were confirmed by elemental analyses, Fourier transform infrared, and 1H NMR and 13C NMR spectra. The mesomorphic properties of elastomers were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the content of the crosslinking unit on the phase behavior of the elastomers was examined. Monomer M1 showed a cholesteric phase, and M2 displayed smectic and nematic phases. The elastomers containing <15 mol % of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3315–3323, 2005  相似文献   

10.
The synthesis of new side-chain cholesteric elastomers derived from a cholesteric monomer and mesogenic crosslinking agent is presented. The chemical structures of the monomers obtained were confirmed by elemental analyses, FT-IR, 1H NMR, and 13C NMR. The mesomorphic properties and thermal stability were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarizing optical microscopy (POM), and X-ray diffraction (XRD) measurements. M1 showed cholesteric phase, and M2 displayed enantiotropic nematic phase and monotropic smectic phase. The elastomers containing less than 12 mol% of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability.  相似文献   

11.
A series of new side chain cholesteric liquid crystalline polysiloxanes was synthesized by grafting copolymerization of a mesogenic monomer (M1) and a chiral monomer (M2). The chemical structures of the monomers and polymers obtained were confirmed by FTIR, and 1H and 13C NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The influence of the content of the chiral unit on phase behaviour of the polymers is discussed. Monomer M1 showed nematic and smectic phases on cooling. The polymers P1 and P2 showed a nematic phase, P3-P5 showed cholesteric Grandjean texture, and P6 and P7 exhibited smectic short-rod texture. The polymers containing more than 7.2 mol % and less than 28.6 mol % of the chrial unit showed an induced cholesteric phase. Experimental results demonstrated that the glass transition, melting and clearing temperatures decreased with increasing content of the chiral unit.  相似文献   

12.
A variety of 4,4'-disubstituted phenyl benzoates having a terminal chain containing multifluorine atoms, attached directly to the benzene ring or through an ester group, have been synthesized and their mesomorphic properties determined by hot stage polarizing optical microscopy. These properties were compared to those of the corresponding hydrogenated esters and to other esters containing rigid terminal chains. Usually transition temperatures were higher and mesophase ranges wider than those observed for the parent compounds but no nematic phases were found. Any mesophase seen was usually a smectic A phase sometimes accompanied by a smectic C phase. Crystal E phases were found along with the smectic A phase in alkyl or alkoxy esters having a C9F19CO2 chain on the acid side. A first order smectic A-smectic C transition was observed in the ester with CN on the acid side and O2CC7F15 on the phenol side. A comparison of the effect of a terminal fluorinated chain and a lateral fluorine group on one set of esters is also included.  相似文献   

13.
The dimesogenic compound consisting of cholesterol and cyanobiphenyl mesogens interlinked byω-oxyalkanoyl spacer was synthesized.The mesomorphic properties were investigated by differential scanning calorimetry(DSC),polarizing optical microscopy(POM),and X-ray diffraction(XRD).The experimental results indicated that this compound exhibited mesophase over a much wider temperature range and a new mesophase blue phase(BP).Focal conic domains(FCDs) and droplets texture to the smectic A phase(SA),oily streaks...  相似文献   

14.
New differential scanning calorimetry measurements of the smectic A-cholesteric latent heat of transition for binary mixtures of cholesteryl nonanoate (C9) and cholesteryl heptanoate (C7), cholesteryl nonanoate and cholesteryl caproate (C6) are reported for cooling cycles. These measurements give evidence of a tricritical point at approximately the reduced temperature TSACh/TChl ≅ 0·92 for 63·1 mol per cent C9 in the mixture of C6 and C9. This tricritical point occurs at reduced temperatures and concentrations different from those already obtained for heating cycles for the same mixture.  相似文献   

15.
Several new side‐chain liquid crystalline (LC) polysiloxanes and elastomers ( IP ‐ VIP ) bearing fluorinated mesogenic units and crosslinking mesogens were synthesized by a one‐step hydrosilylation reaction with poly(methylhydrogeno)siloxane, a fluorine‐containing LC monomer 4′‐undec‐10‐enoyloxy‐biphenyl‐4‐yl 4‐fluoro‐benzoate and a crosslinking LC monomer 4′‐(4‐allyloxy‐benzoxy)‐biphenyl‐4‐yl 4‐allyloxy‐benzoate. The chemical structures and LC properties of the monomers and polymers were characterized by use of various experimental techniques such as FTIR, 1H‐NMR, EA, TGA, DSC, POM and XRD. The effect of crosslinking mesogens on mesomorphic properties of the fluorinated LC polymers was studied as well. The obtained polymers and elastomers were soluble in many solvents such as toluene, tetrahydrofuran, chloroform, and so forth. The temperatures at which 5% weight loss occurred (Td) were greater than 250°C for all the polymers, and the weight of residue near 600°C increased slightly with increase of the crosslinking mesogens in the fluorinated polymer systems. The samples IP , IIP , IIIP and IVP showed both smectic A and nematic phases when they were heated and cooled, but VP and VIP exhibited only a nematic mesophase. The glass transition temperature (Tg) of polymers increased slightly with increase of crosslinking mesogens in the polymer systems, but the mesophase–isotropic phase transition temperature (Ti) and smectic A–nematic mesophase transition temperature (TS‐N) decreased slightly. It suggests that the temperature range of the mesophase became narrow with the increase of crosslinking mesogens for all the fluorinated polymers and elastomers. In XRD curves, the intensity of sharp reflections at low angle decreased with increase of crosslinking mesogens in the fluorinated polymers systems, indicating that the smectic order derived from fluorinated mesogenic units should be destroyed by introduction of more crosslinking mesogens. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Small angle X-ray scattering was used to examine the new chiral side chain liquid crystalline polyacrylates (P4M and P11M) and their mixtures (2 wt %) in the low molar mass nematogenics 4'-n-pentyl-4-cyanobiphenyl (5CB) and 4'-octyl-4-cyanobiphenyl (8CB). Complementary data were obtained by polarizing optical microscopy. In agreement with previous studies, the mesophases of the bulk polymers show a dependence on the aliphatic spacers linking the mesogenic units to the polymer backbone. Chiral nematic and smectic A1 phases were observed for the polyacrylates with four (P4M) and eleven (P11M) methylene units as spacers, respectively. In solution with 5CB and 8CB, P4M exhibits an injected smectic phase, whereas P11M maintains the smectic arrangement already observed in the bulk, with swollen smectic layers. In all the mixtures, layer stability was found to depend on the liquid crystal used as solvent, as well as on the temperature. At temperatures corresponding to the nematic 5CB and 8CB, the coexistence of two mesophases was observed in the mixtures. Moreover, with the liquid crystal solvents in the isotropic phase, microstructures suspended in the solvent matrix containing the liquid crystalline polymer in the smectic arrangement were detected.  相似文献   

17.
A mesogenic crosslinking agent M-1 was synthesized to minimize the perturbations of non-mesogenic crosslinking agents in liquid crystalline elastomers. The synthesis of new side chain liquid crystalline elastomers containing the rigid mesogenic crosslinking agent M-1 and nematic monomer M-2 by a one-step hydrosilylation reaction is described. The chemical structures of the monomers and network polymers obtained were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties and phase behaviour were investigated by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The influence of the crosslinking units on phase behaviour is discussed. Liquid crystalline elastomers containing less than 15 mol % of the crosslinking units showed elasticity, reversible phase transitions and a threaded texture. The experimental results demonstrated that the glass transition temperature of polymers P-1-7 increased with increasing concentration of crosslinking agent M-1; but the isotropic temperature and liquid crystalline range decreased slightly.  相似文献   

18.
Fluorinated chiral liquid-crystalline elastomers (LCEs) were graft copolymerized by a one-step hydrosilylation reaction with polymethylhydrogenosiloxane, a fluorinated LC monomer 4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoyloxy)phenyl 4-(undec-10-enoyloxy)benzoate (PPUB) and a chiral crosslinking LC monomer (3R,3aR,6S,6aR)-6-(undec-10-enoyloxy)hexahydrofuro[3,2-b]furan-3-yl 4′-(4-(allyloxy)benzoyloxy)biphenyl-4-carboxylate (UHAB). The chemical structure, liquid-crystalline behavior and polarization property were characterized by use of various experimental techniques. The effective crosslink density of the LCEs was characterized by swelling experiments. The thermal analysis results showed that the temperatures at which 5% weight loss occurred were greater than 250 °C for all the LCEs, and the residue weight nearby 600 °C increase with increasing chiral crosslinking components in the polymer systems. All the samples showed chiral smectic C mesophase when they were heated. The glass transition temperature and mesophase-isotropic phase transition temperature of fluorinated elastomers increased slightly with increase of chiral crosslinking mesogens in the polymer systems, but the enthalpy changes of mesophase-isotropic phase transition decreased slightly. In XRD curves, all the samples exhibited strong sharp reflections at small angles suggesting smectic layered packing arrangement. These fluorinated chiral LCEs showed 0.1–0.2 μC/cm2 of spontaneous polarization with increasing chiral crosslinking component.  相似文献   

19.
New side‐chain cholesteric liquid‐crystalline elastomers containing cholesteryl 4‐allyloxybenzoate as cholesteric mesogenic units and biphenyl 4,4′‐bis(10‐undecen‐1‐ylenate) as smectic crosslinking units were synthesized. The chemical structures of the olefinic compounds and polymers obtained were confirmed by element analysis, Fourier transform infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectra. The mesogenic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the concentration of the crosslinking unit on the phase behavior of the elastomers was examined. The elastomers containing less than 17 mol % of the crosslinking units revealed elasticity, reversible mesomorphic phase transition, wider mesophase temperature ranges, and higher thermal stability. The experimental results demonstrated that the glass‐transition temperature, isotropization temperature, and mesophase temperature ranges decreased with an increasing concentation of the crosslinking unit. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5262–5270, 2004  相似文献   

20.
《Liquid crystals》2001,28(7):1009-1015
Chiral non-symmetric dimeric liquid crystals consisting of a cholesteryl ester moiety as chiral entity and a biphenyl aromatic core, interconnected through n-butyl (C4) or n-pentyl (C5) parity alkylene spacers, have been synthesized and investigated for their liquid crystalline properties. All the dimers exhibit enantiotropic mesophases. The first member of the dimers having the C4 central spacer exhibit only the chiral nematic (N*) mesophase, while the higher homologues also show smectic A (SmA) and twist grain boundary (TGB) mesophases. The dimers of the other series containing the C5 central spacer also have stable SmA, TGB and N* mesophases, except for the first which does not show the TGB phase. Both series of compounds show a weak odd-even effect with terminal alkyl chain substitution, while the spacer length has a marked influence on the phase transition temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号