首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper addresses chaos anti-synchronization of uncertain unified chaotic systems with dead-zone input nonlinearity. Using the sliding mode control technique and Lyapunov stability theory, a proportional–integral (PI) switching surface is proposed to ensure the stability of the closed-loop error system in sliding mode. Then a sliding mode controller (SMC) is proposed to guarantee the hitting of the switching surface even with uncertainties and the control input containing dead-zone nonlinearity. Some simulation results are included to demonstrate the effectiveness and feasibility of the proposed synchronization scheme.  相似文献   

2.
This paper deals with the pole-placement type robust adaptive control of continuous linear systems in the presence of bounded noise and a common class of unmodeled dynamics with the use of multiple estimation schemes working in parallel. The multiestimation scheme consisting of the above set of various single estimation schemes is a tool used to minimize the plant identification error by building an estimate which is a convex combination of the estimates at all time. The weighting functions of the individual estimates are provided at each time by a suboptimization scheme for a quadratic loss function of a possibly filtered tracking error and/or control input. The robust stability of the overall adaptive scheme is ensured by an adaptation relative dead zone which takes into account the contribution of the unmodeled dynamics and bounded noise. The basic results are derived for two different estimation strategies which have either a shared regressor with the plant or individual regressors for the input contribution and its relevant time-derivatives. In this second case, the plant input is obtained through a similar convex combination rule as the one used for the estimators in the first approach. An extension of the basic strategies is also pointed out including a combined use of the suboptimization scheme with a supervisor of past measures for the on-line calculation of the estimator weights in the convex combination.  相似文献   

3.
一类死区非线性输入系统的自适应模糊控制   总被引:1,自引:0,他引:1  
针对一类具有死区非线性输入的非线性系统,基于滑模控制的基本原理,利用II型模糊逻辑系统对未知函数进行在线逼近,提出了一种具有监督器的自适应模糊滑模控制方法。该方法通过监督控制器保证闭环系统所有信号有界,并通过引入最优逼近误差的自适应补偿项来消除建模误差的影响。通过理论分析,证明了跟踪误差收敛到零。  相似文献   

4.
In this paper, a nonlinear adaptive output feedback robust controller is proposed for motion control of hydraulic servo systems in the presence of largely unknown matched and mismatched modeling uncertainties. Different from the existing control technologies, the presented hydraulic closed-loop controller which can deal with strong matched and mismatched parametric uncertainties is synthesized via the backstepping technique. Specially, a nonlinear disturbance observer which can estimate the largely mismatched disturbance is integrated into the design of the linear extended state observer to obtain estimation of unmeasurable system states, uncertain parameters and strong disturbances simultaneously. In addition, the projection-type adaptive law is synthesized into the design of the resulting controller. More importantly, the global stability of the whole closed-loop system is strictly guaranteed by the Lyapunov analysis. Furthermore, the effectiveness and practicability of the presented control strategy have been demonstrated by comparative experiments under different working conditions.  相似文献   

5.
An output feedback controller is proposed for a class of uncertain nonlinear systems preceded by unknown backlash-like hysteresis, where the hysteresis is modeled by a differential equation. The unknown nonlinear functions are approximated by fuzzy systems based on universal approximation theorem, where both the premise and the consequent parts of the fuzzy rules are tuned with adaptive schemes. The proposed approach does not need the availability of the states, which is essential in practice, and uses an observer to estimate the states. An adaptive robust structure is used to cope with lumped uncertainties generated by state estimation error, approximation error of fuzzy systems and external disturbances. Due to its adaptive structure the bound of lumped uncertainties does not need to be known and at the same time the chattering is attenuated effectively. The strictly positive real (SPR) Lyapunov synthesis approach is used to guarantee asymptotic stability of the closed-loop system. In order to show the effectiveness of the proposed method simulation results are illustrated.  相似文献   

6.
In this paper, a practical projective synchronization problem of master–slave chaotic systems is investigated. More specifically, a fuzzy adaptive slave chaotic system subject to dead-zone nonlinearity in the input channel is proposed using only the measurable output of the master system thanks to a suitable observer. A practical projective synchronization between the master and slave systems is achieved by an adequate fuzzy adaptive control system. The underlying parameter adaptation design as well as stability analysis are carried out using a Lyapunov based approach. Unlike the previous works, in the design of the proposed synchronization scheme, we do not require to know the uncertainties function and that the dynamics of the original synchronization error are strictly positive real (SPR). In fact, herein, the uncertainties function is estimated by a fuzzy adaptive system and the dynamics of the original synchronization error are augmented by a low pass filter designed to satisfy the SPR condition. Simulation results are given to show the effectiveness of the proposed practical projective synchronization scheme.  相似文献   

7.
A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. An adaptation algorithm is given based on the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, an adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme.  相似文献   

8.
A new problem of adaptive type-2 fuzzy fractional control with pseudo-state observer for commensurate fractional order dynamic systems with dead-zone input nonlinearity is considered in presence of unmatched disturbances and model uncertainties; the control scheme is constructed by using the backstepping and adaptive technique. To avoid the complexity of backstepping design process, the dynamic surface control is used. Also, Interval type-2 Fuzzy logic systems (IT2FLS) are used to approximate the unknown nonlinear functions. By using the fractional adaptive backstepping, fractional control laws are constructed; this method is applied to a class of uncertain fractional-order nonlinear systems. In order to better control performance in reducing tracking error, the PSO algorithm is utilized for tuning the controller parameters. Stability of the system is proven by the Mittag–Leffler method. It is shown that the proposed controller guarantees the boundedness property for the system and also the tracking error can converge to a small neighborhood of the origin. The efficiency of the proposed method is illustrated with simulation examples.  相似文献   

9.
This article proposes a novel adaptive sliding mode control (SMC) scheme to realize the problem of robust tracking and model following for a class of uncertain time‐delay systems with input nonlinearity. It is shown that the proposed robust tracking controller guarantees the stability of overall closed‐loop system and achieves zero‐tracking error in the presence of input nonlinearity, time‐delays, time‐varying parameter uncertainties and external disturbances. The selection of sliding surface and the existence of sliding mode are two important issues, which have been addressed. This scheme assures robustness against input nonlinearity, time‐delays, parameter uncertainties, and external disturbances. Moreover, the knowledge of the upper bound of uncertainties is not required and chattering phenomenon is eliminated. Both theoretical analysis and illustrative examples demonstrate the validity of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 66–73, 2015  相似文献   

10.
In this paper, the problem of synchronizing two chaotic gyros in the presence of uncertainties, external disturbances and dead-zone nonlinearity in the control input is studied while the structure of the gyros, parameters of the dead-zone and the bounds of uncertainties and external disturbances are unknown. The dead-zone nonlinearity in the control input might cause the perturbed chaotic system to show unpredictable behavior. This is due to the high sensitivity of these systems to small changes in their parameters. Thereby, the effect of these issues should not be ignored in the control design for these systems. In order to eliminate the effects from the dead-zone nonlinearity, in this paper, a robust adaptive fuzzy sliding mode control scheme is proposed to overcome the synchronization problem for a class of unknown nonlinear chaotic gyros. The main contribution of our paper in comparison with other works that attempt to solve the problem of dead-zone in the synchronization of chaotic gyros is that we assume that the structure of the system, uncertainties, external disturbances, and dead-zone are fully unknown. Simulation results are provided to illustrate the effectiveness of the proposed method.  相似文献   

11.
For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov–Krasovskii synthesis method, therefore asymptotic stability is guaranteed.  相似文献   

12.
The aim of this paper is the synthesis of a robust control law for chaos suppression of a class of non-linear oscillator with affine control input. A robust state observer based active controller, which provides robustness against model uncertainties and noisy output measurements is proposed. The closed-loop stability for the underlying closed-loop system is done via the regulation and estimation errors dynamics. The performance of the proposed control law is illustrated with numerical simulations. The method is general and can be applied to various non-linear systems which satisfy the conditions required.  相似文献   

13.
对具有未建模动态并且输入通道存在干扰的动态不确定多输入多输出(MIMO)模型参考自适应控制(MRAC)系统,应用输出反馈给出了一种变结构模型跟踪控制器设计.系统的已建模部分有大于1的任意相对阶且已建模部分阶的上界是未知的.通过引入辅助信号和带有记忆功能的正规化信号,以及适当选择控制器参数,保证了闭环系统的全局稳定性,且跟踪误差可调整到任意小.  相似文献   

14.
A class of long-range predictive adaptive fuzzy relational controllers is presented. The plant behavior is described over an extended time horizon by a fuzzy relational model which is identified based on input-output closed-loop observations of the plant variables. In this class of adaptive controllers the control law attempts to minimize a quadratic cost over an extended control horizon. When used with linear models, this approach has revealed a significant potential for overcoming the limitations of one-step ahead schemes, such as the stabilization of non-minimum phase plants. Here, a uniform framework is adopted for implementing both the fuzzy model and the fuzzy controller, namely distributed fuzzy relational structures gaining from their massive parallel processing features and from the learning capabilities typical of the connectivist approaches. Issues such as maintenance during the adaptation process of the meaning of linguistic terms used at both fuzzy systems interfaces are addressed, namely by introducing a new design methodology for on-line fuzzy systems interface adaptation. The examples presented reinforce the claim of the usefulness of this new approach.  相似文献   

15.
In industrial applications, the performance of robot manipulators is always affected due to the presence of uncertainties and disturbances. This paper proposes a novel adaptive control scheme for robust control of robotic manipulators perturbed by unknown uncertainties and disturbances. First, an active sliding mode controller is designed and a sufficient condition is obtained guarantying reachability of the states to hit the sliding surface in finite time. Then, based on a Lyapunov function candidate an adaptive switching gain is derived which make the controller capable to bring the tracking error to zero without any disturbance exerted upon the stability. By virtue of this controller it can be shown that the controller can track the desired trajectories even in the presence of unknown perturbations. For the problem of determining the control parameters Particle Swarm Optimization (PSO) algorithm has been employed. Our theoretic achievements are verified by numerical simulations.  相似文献   

16.
In this paper, a robust adaptive sliding mode controller (RASMC) is introduced to synchronize two different chaotic systems in the presence of unknown bounded uncertainties and external disturbances. The structure of the master and slave chaotic systems has no restrictive assumption. Appropriate adaptation laws are derived to tackle the uncertainties and external disturbances. Based on the adaptation laws and Lyapunov stability theory, an adaptive sliding control law is designed to ensure the occurrence of the sliding motion even when both master and slave systems are perturbed with unknown uncertainties and external disturbances. Since the conventional sliding mode controllers contain the sign function, the undesirable chattering is occurred. We propose a new simple adaptive scheme to eliminate the chattering. Finally, numerical simulations are presented to verify the usefulness and applicability of the proposed control strategy.  相似文献   

17.
In this study, a new nonlinear and full adaptive backstepping speed tracking control scheme is developed for an uncertain permanent magnet synchronous motor (PMSM). Except for the number of pole pairs, all the other parameters in both PMSM and load dynamics are assumed unknown. Three phase currents and rotor speed are supposed to be measurable and available for feedback in the controller design. By designing virtual control inputs and choosing appropriate Lyapunov functions, the final control and parameter estimation laws are derived. The overall control system possesses global asymptotic stability; all the signals in the closed loop system remain bounded, according to stability analysis results based on Lyapunov stability theory. Further, the proposed controller does not require computation of regression matrices, with the result that take the nonlinearities in quite general. Simulation results clearly exhibit that the controller guarantees tracking of a time varying desired reference speed trajectory under all the uncertainties in both PMSM and load dynamics without singularity and overparameterization. The results also show that all the parameter estimates converge to their true values on account of the fact that reference speed signal chosen to be sufficiently rich ensures persistency of excitation condition. Consequently, the proposed controller ensures strong robustness against all the parameter uncertainties and unknown bounded load torque disturbance in the PMSM drive system. Numerical simulations demonstrate the performance and feasibility of the proposed controller.  相似文献   

18.
This work presents an adaptive sliding mode control scheme to elucidate the robust chaos suppression control of non-autonomous chaotic systems. The proposed control scheme utilizes extended systems to ensure that continuous control input is obtained in order to avoid chattering phenomenon as frequently in conventional sliding mode control systems. A switching surface is adopted to ensure the relative ease in stabilizing the extended error dynamics in the sliding mode. An adaptive sliding mode controller (ASMC) is then derived to guarantee the occurrence of the sliding motion, even when the chaotic horizontal platform system (HPS) is undergoing parametric uncertainties. Based on Lyapunov stability theorem, control laws are derived. In addition to guaranteeing that uncertain horizontal platform chaotic systems can be stabilized to a steady state, the proposed control scheme ensures asymptotically tracking of any desired trajectory. Furthermore, the numerical simulations verify the accuracy of the proposed control scheme, which is applicable to another chaotic system based on the same design scheme.  相似文献   

19.
In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.  相似文献   

20.
输入通道有干扰多变量MRAC系统全局稳定化控制   总被引:1,自引:0,他引:1       下载免费PDF全文
对具有未建模动态且输入通道存在干扰的动态不确定多输入多输出(MIMO)模型参考自适应控制(MRAC) 系统,仅应用系统的输入输出量测数据给出了一种变结构模型跟踪控制器设计机制.通过辅 助信号和带有记忆功能的正规化信号,并适当选择控制器参数, 所提出的变结构控制 (VSC)能保证闭环系统的全局稳定性,且跟踪误差可调整到任意小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号