首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Comparison of turbulence models in simulating swirling pipe flows   总被引:1,自引:0,他引:1  
Swirling flow is a common phenomenon in engineering applications. A numerical study of the swirling flow inside a straight pipe was carried out in the present work with the aid of the commercial CFD code fluent. Two-dimensional simulations were performed, and two turbulence models were used, namely, the RNG kε model and the Reynolds stress model. Results at various swirl numbers were obtained and compared with available experimental data to determine if the numerical method is valid when modeling swirling flows. It has been shown that the RNG kε model is in better agreement with experimental velocity profiles for low swirl, while the Reynolds stress model becomes more appropriate as the swirl is increased. However, both turbulence models predict an unrealistic decay of the turbulence quantities for the flows considered here, indicating the inadequacy of such models in simulating developing pipe flows with swirl.  相似文献   

2.
The Reynolds-averaged Navier–Stokes (RANS) equations were solved along with turbulence models, namely kε, kω, Reynolds stress models (RSM), and filtered Navier–Stokes equations along with Large Eddy Simulation (LES) to study the fully-developed turbulent flows in circular pipes roughened by repeated square ribs with various spacings. Solutions of these flows were obtained using the commercial computational fluid dynamics (CFD) software Fluent. The numerical results were validated against experimental measurements and other numerical data published in literature. The performance of the turbulence models was compared and discussed. All the RANS models and LES model were observed to perform equally well in predicting the time-averaged flow statistics. However no instantaneous information can be obtained from the RANS results. Therefore, when a rough overview of the flow process in a pipe roughened by repeated ribs is needed, any one of the RANS models can be of value. On the other hand, the instantaneous as well as time-averaged flows could be studied with more insight using LES, albeit at a cost of CPU effort at least one order higher.  相似文献   

3.
Gas jets impinging onto a gas–liquid interface of a liquid pool are studied using computational fluid dynamics modelling, which aims to obtain a better understanding of the behaviour of the gas jets used metallurgical engineering industry. The gas and liquid flows are modelled using the volume of fluid technique. The governing equations are formulated using the density and viscosity of the “gas–liquid mixture”, which are described in terms of the phase volume fraction. Reynolds averaging is applied to yield a set of Reynolds-averaged conservation equations for the mass and momentum, and the kε turbulence model. The deformation of the gas–liquid interface is modelled by the pressure jump across the interface via the Young–Laplace equation. The governing equations in the axisymmetric cylindrical coordinates are solved using the commercial CFD code, FLUENT. The computed results are compared with experimental and theoretical data reported in the literature. The CFD modelling allows the simultaneous evaluation of the gas flow field, the free liquid surface and the bulk liquid flow, and provides useful insight to the highly complex, and industrially significant flows in the jetting system.  相似文献   

4.
In the present work, experimental and numerical studies for the hydrodynamics in a gas–solid tapered fluidized bed have been carried out. The experimental results obtained by carrying out experiments in a tapered fluidized bed for glass bead (spherical) of 2.0 mm and dolomite (non-spherical particles) of 2.215 mm in diameter, were compared with the computational fluid dynamics (CFD) simulation results, using a commercial CFD software package, Fluent. The gas–solid flow was simulated using the Eulerian–Eulerian model and applying the kinetic theory of granular flow for solid particles. The Gidaspow drag model was used to calculate the gas–solid momentum exchange coefficients. Pressure drops predicted by the CFD simulations agreed reasonably well with experimental measurements for both types (spherical and non-spherical) of particles. Good agreement was also obtained between experimental and CFD predicted bed expansion ratios for both types of particles. Present study provides a useful basis for further works on the CFD of tapered fluidized bed.  相似文献   

5.
The fast pace in the development of indoor sensors and communication technologies is allowing a great amount of sensor data to be utilized in various areas of indoor air applications, such as estimating indoor airflow patterns. The development of such an inverse model and the design of a sensor system to collect appropriate data are discussed in this study. Algebraic approaches, including singular value decomposition (SVD), are evaluated as methods to inversely estimate airflow patterns given limited sensor measurements. In lieu of actual sensor data, computational fluid dynamics data are used to evaluate the accuracy of the airflow patterns estimated by the inverse models developed in this study. It was found that the airflow patterns estimated by the linear inverse SVD model were as accurate as those estimated by the nonlinear inverse-multizone model. For the zones tested, sensor measurements along on the walls and near the inlet and outlet provided the greatest improvement in the accuracy of the estimated airflow patterns when compared with the results using measurements from other locations.  相似文献   

6.
The strengthened environmental laws require the power plants to reduce the emissions. Flue gas desulphurization and deNOx involve adding chemicals to the flow stream, thereby resulting in increased mass flow. This problem could be overcome by reducing the pressure drop in the duct work and stack combination, so that a higher flow at reduced pressure drop can be handled by the existing fans. In this study, a power plant stack model of 1:40 was investigated numerically. The pressure reduction was achieved by introduction of baffles with various orientations and turning vanes at the inlet of the stack. The flows were modeled and analyzed using commercial computational fluid dynamics (CFD) software Fluent 6.2. The numerical results were validated with the experimental data. The 30° baffle without turning vanes was found to be the optimum baffle angle in terms of the pressure loss reduction. Variation of axial velocity, swirling component and turbulence kinetic energy along the axis of the stack was analyzed to understand the mechanism of the pressure loss reduction in a power plant stack. Guidelines for further pressure loss reduction were provided based on the insight gained from the simulation results.  相似文献   

7.
Hydrocyclones are used in mineral industries for classification and separation of solid particles of different sizes and densities suspended in water medium. In the present study an Eulerian–Eulerian CFD simulation of a solid–liquid hydrocyclone has been carried out taking into account two solid phases and one liquid phase. The average size of the larger particle was 0.6117 and that of the smaller particle was 0.09875 mm. Three separate momentum balance equations for the three phases have been considered unlike that in the mixture model where a single momentum equation is solved for the three phases. Two turbulent models i.e. the Reynolds stress model (RSM) and the standard kε model were studied. Comparison of the two turbulence models showed slight variation in prediction of the velocity profile and the separation efficiency. The maximum deviation between the two models was observed near the wall where the stress was maximum for larger size particles.  相似文献   

8.
Six turbulence models, including standard kε, kε RNG, kω (88), revised kω (98), Reynolds stress transport model (RSTM), and two-fluid model (TFM), were applied to the simulation of a closed conduit polychromatic UV reactor. Predicted flow field and turbulent kinetic energy were compared with the experimental data from a digital particle image velocimetry (DPIV). All of the predicted flow fields were combined with a multiple segment source summation (MSSS) fluence rate model and three different microbial response kinetic models to simulate the disinfection process at two UV lamp power conditions. Microbial transport was simulated using the Lagrangian particle tracking method. The results show that the fluence distributions and the effluent inactivation levels were sensitive to the turbulence model selection. The level of sensitivity was a function of the operating conditions and the UV response kinetics of the microorganisms. Simulations with operating conditions that produced higher log inactivation or utilized microorganisms with higher UV sensitivity showed greater sensitivity to the turbulence model selection. In addition, a broader fluence distribution was found with turbulence models that predicted a larger wake region behind the lamps.  相似文献   

9.
In the present work a numerical study was carried out to investigate the inclusion behaviour in a four strand asymmetric billet caster tundish. A parameter called separation efficiency was used to compare inclusion behaviour quantitatively. An open source CFD code called OpenFOAM was used to model the inclusions through Lagrangian Particle Tracking approach. First, the Lagrangian particle class was defined in the existing simpleFoam solver of the OpenFOAM and the same customized solver was used to track particles in the already obtained velocity field. Inclusions were modelled as spheres and various forces acting were also considered. Present numerical results were validated using available experimental results and found to be in good agreement. Further, such inclusion behaviour was also extended for a real industrial case tundish. Inclusion flotation characteristics in thermally induced flow was analyzed in detail. This is, perhaps, for the first time such an exhaustive study on inclusion analysis being reported considering the forces acting on the inclusions particles and with OpenFOAM.  相似文献   

10.
Lean burn after-treatment systems are the current focus for reducing emissions from diesel exhaust. The trend is for commercial CFD packages to use a single channel modelling approach. Due to computational demands, this necessitates specification of representative channels for modelling, implying prior knowledge of the flow field. This paper investigates a methodology for applying the porous medium approach to lean burn after-treatment systems. This approach has proved successful for three-way catalysis modelling and has the advantage that the flow field is predicted. Chemical kinetic rates for NOx trapping and regeneration in the model are based on information available in the open literature. Similarly, filtration information based on mass accumulation and soot combustion kinetics are also readily available. Modification of the source terms in a commercial CFD package enables prediction of trapping and release of NOx. This is an effective way to model a NOx trap after-treatment system and provides simultaneous 3D modelling of the flow field. With diesel, particulate filtration is required. In the case of particulate traps, however, because of channel geometry, some assumptions are necessary for use of the porous medium approach and these are discussed in this paper. Both models produce qualitatively correct output and have parameters that can be tuned to conform to experimental data. Data to validate the NOx trap model is to be measured. The particulate trap model, on the other hand, is a feasibility study for modelling the complete diesel after-treatment system using the porous medium approach.  相似文献   

11.
Let A be a direct limit of a direct system of Cohen–Macaulay rings. In this paper, we describe the Cohen–Macaulay property of A. Our results indicate that A is not necessarily Cohen–Macaulay. We show A is Cohen–Macaulay under various assumptions. As an application, we study Cohen–Macaulayness of non-affine normal semigroup rings.  相似文献   

12.
In the present study, the turbulent gas flow dynamics in a two-dimensional convergent–divergent rocket nozzle is numerically predicted and the associated physical phenomena are investigated for various operating conditions. The nozzle is assumed to have impermeable and adiabatic walls with a flow straightener in the upstream side and is connected to a plenum surrounding the nozzle geometry and extended in the downstream direction. In this integrated component model, the inlet flow is assumed a two-dimensional, steady, compressible, turbulent and subsonic. The physics based mathematical model of the considered flow consists of conservation of mass, momentum and energy equations subject to appropriate boundary conditions as defined by the physical problem stated above. The system of the governing equations with turbulent effects is solved numerically using different turbulence models to demonstrate their numerical accuracy in predicting the characteristics of turbulent gas flow in such complex geometry. The performance of the different turbulence models adopted has been assessed by comparing the obtained results of the static wall pressure and the shock position with the available experimental and numerical data. The dimensionless shear stress at the nozzle wall and the separation point are also computed and the flow field is illustrated. The various implemented turbulence models have shown different behavior of the turbulent characteristics. However, the shear-stress transport (SST) kω model exhibits the best overall agreement with the experimental measurements. In general, the proposed numerical procedure applied in the present paper shows good capability in predicting the physical phenomena and the flow characteristics encountered in such kinds of complex turbulent flow.  相似文献   

13.
The flow simulation of a low-specific-speed high-speed centrifugal pump   总被引:2,自引:0,他引:2  
In this paper a general three-dimensional simulation of turbulent fluid flow is presented to predict velocity and pressure fields for a centrifugal pump. A commercial CFD code was used to solve the governing equations of the flow field. In order to study the most suitable turbulence model, three known turbulence models of standard kε, RNG and RSM were applied. The complex flow configuration required us to use around 5,800,000 cells, and 12 computational nodes (processors) for parallel computing. Simulation results in the form of characteristic curves were compared with available experimental data, and an acceptable agreement was obtained. Additionally, effect of number of blades on the efficiency of pump was studied. The number of blades was changed from 5 to 7. The results show that the impeller with 7 blades has the highest head coefficient. Finally, it was observed also that the position of blades with respect to the tongue of volute has great effect on the start of the separation. Thus, to analyze the effect of blade number on the characteristics of the pump, the position of blade and tongue should be similar to each other. Investigations of this kind may help to reduce the required experimental work for the development and design of such devices.  相似文献   

14.
Turbulent flow around single concentric long capsule in a pipe   总被引:2,自引:0,他引:2  
A numerical solution was developed for the equations governing the turbulent flow around single concentric long capsule in a pipe. First, a turbulence model was established for the concentric annulus between the capsule and the pipe to simulate the flow as axi-symmetric, two dimensional, steady flow without edge effect. Second, the same case was considered taking into account the edge effect. Finally, turbulence modelling was established to simulate the case as a three dimensional steady flow, with a view of investigating the validity of axi-symmetric flow assumption. Three different turbulence models were used: an algebraic model (Baldwin–Lomax model) and two types of two-equation models (kε and kω). Obtained results of pressure gradient along the capsule were compared with available experimental data to verify the used models. In addition, experimental data of the velocity profiles of other investigators were also used in this concern. The results predicted by the three different turbulence models were shown to agree well with the experimental data, though precision differed from one to another.  相似文献   

15.
Gabion weirs with optional design as a broad crested weirs are suitable structures to reduce flash flood with a minimal negative impact on the water environment. In the present study, the 3-D flow was simulated around gabion weirs with respect to free-surface water. The Reynolds-averaged Navier–Stokes equations are solved to predict water surface over the gabion weir. The VOF method with the geometric reconstruction scheme was applied to treat the complex free-surface flow. Simulations were performed using three variants of the kε and the RSM models to find the water level and velocity distribution profile and results are compared with several experimental data available in the literature. The structured mesh was used for all domains with high dense mesh near the solid region. A comparison between experimental data and simulations indicates that the kε model can be used to predict the complex flow and water level with high accuracy.  相似文献   

16.
Computational Fluid Dynamics (CFD) simulations of liquid–metal spallation targets, such as MEGAPIE and ESS, which utilize the High Reynolds number kε turbulence model, invariably incorporate an implicit law of the wall treatment in which a linear or logarithmic fit to the velocity and temperature profiles is made next to heated, non-slip surfaces. The law is well-established, but has been derived from the assumptions that the wall shear stress and the normal heat flux are constant through the viscous sub-layer and buffer zone, which lie beneath the turbulent boundary layer. However, in the case of the heat flux, this condition will be violated for applications in which there is intense volumetric heating in the near-wall layers. This is just the case for the spallation reactions taking place in liquid–metal targets as a result of proton bombardment. In this article, a modified law of the wall is derived to be used under such conditions. Use of the law is illustrated by means of flow in a flat channel and one application to a spallation target. From the applications considered, it is found that the effect of the modification is small, provided the local mesh resolution is chosen appropriately. Specific recommendations regarding optimum mesh size for liquid–metal heat transfer problems are given, which will be of general interest, with or without volumetric heating.  相似文献   

17.
The aim of this study was to compare the measured effectiveness of an air curtain device at different jet velocities against a three-dimensional (3-D) computational fluid dynamics (CFD) model. The air curtain device was not as wide as the entrance and had a geometry that encouraged 3-D flow. By carefully setting up the air curtain an effectiveness of 0.71 was achieved compared to the initial value of only 0.31 as set by the air curtain device installer. The 3-D CFD model predicted the infiltration through the entrance with no air curtain to an accuracy of within 20–32%. The predicted effectiveness, E, of the air curtain at different jet velocities was 0.10–0.15 lower than measured. The shape of the effectiveness curve against jet velocity was well predicted. CFD has shown that the flow from this air curtain cannot be considered as 2-D. The central part of the jet is deflected away from the cold store by the Coanda effect caused by the air curtain device’s fan body. The edges of the jet are deflected into the cold store by the stack pressures and turn into the void caused by the deflected central jet.  相似文献   

18.
Computational fluid dynamics (CFD) modelling is now widely applied as an industrial plant development and process optimisation tool. The steady increase in computer power over recent years has enabled process engineers to model reacting multi-phase flows in a realistic geometry with good mesh resolution. As a result, the number of applications of CFD to industrial processes is also growing rapidly and increasing in sophistication. This paper reviews some of the recent applications of the CFX-4 code [CFX-4.3: Solver Manual, AEA Technology Engineering Software, 1999] to the power generation and combustion industries. The aim is to illustrate what can be done and also to identify trends and those areas where further work is needed. Examples include coal-fired low-NOx burner design, furnace optimisation, over-fire air, gas reburn, and laminar flames. It is argued that the trend is for CFD models to become more comprehensive and accessible by being coupled to other process models and embedded in automated information and process control systems.  相似文献   

19.
Based on the structural and work characteristics of a spiraled and sprayed precalciner, the RNG kε model and the SIMPLE method were used to simulate the aerodynamic characteristics in a sprayed and spiraled precalciner. The simulation results demonstrate that the flow area of airflow was increased abruptly due to the reduced part of the bottom of precalciners, which attributed to a sprayed effect. With the mix of the tertiary air with the swirl flow and secondary air, a high-speed zone was formed in the opposite side of the inlet of tertiary air, in which the highest speed was 32.97 m/s. Moreover, the inlet of raw meal designed in the high-speed zone can be propitious to the decentralization of the raw meal. A back-flow zone was formed near the side of the inlet of tertiary air, in which the velocity was negative. From the analysis of the results, the flow field of the precalciner is composed of a sprayed zone, a high-speed zone, a back-flow zone and cylinder zone; moreover, the simulation results agree with those of the engineering compared to the in situ results. The results also showed that the CFD method can be used to give the basis for optimizing the geometrical design and flow parameters of a precalciner.  相似文献   

20.
Computational fluid dynamics (CFD) is used to simulate the behavior of two phase gas solid in a fluid catalytic cracking (FCC) riser. Gas and particle phases are considered as separate fully interpenetrating continuous media within each control volume. Each phase described in terms of its own separate mass and momentum conservation equations. Simple k–epsilon (kg?g) turbulence model is used for the gas phase and the solid phase is handled with the kinetic theory of granular flows. Source terms are used to account for the influence of hydrodynamic drag on the production, dissipation and exchange of turbulent kinetic energy between the phases. For the particles partial slip condition is considered at the wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号