首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alumina-based pigments were synthesized by the proteic sol–gel method. In this method, coconut water is employed as polymeric agent instead of the conventional alkoxide precursors. To this study, three common chromophore metallic ions (Mn3+, Co3+, and Cr3+) were chosen in order to verify the method efficiency. Differential thermal analysis (DTA), thermogravimetry (TG), and XRD techniques were used to characterize the synthesis process. The colorimetric characterization of the produced pigments was done according to the CIE-L*a*b* 1976 norm which is recommended by the CIE (International Commission on Illumination). The synthesized pigments presented intense and uniform colors in accordance to the literature results for each chromophore ion. The produced pigments also presented agglomerated with an average grain size of 180 nm when calcined at 800 °C.  相似文献   

2.
Al2O3–TiO2 nanocrystalline powders were synthesized by sol–gel process. Aluminum sec-butoxide and titanium isopropoxide chemicals were used as precursors and ethyl acetoacetate was used as chelating agent. Thermal and crystallization behaviors of the precursor powders were investigated by thermal gravimetric-differential thermal analysis, Fourier-transform infrared spectrum and X-ray diffraction. The average crystalline size of heat treated Al2O3–TiO2 powders at 1,100 °C is ~100 nm.  相似文献   

3.
Nanocrystalline Copper aluminate (CuAl2O4) was prepared by sol–gel technique using aluminum nitrate, copper nitrate, diethylene glycol monoethyl ether and citric acid were used as precursor materials. This method starts from of the precursor complex, and involves formation of homogeneous solid intermediates, reducing atomic diffusion processes during thermal treatment. The formation of pure crystallized CuAl2O4 nanocrystals occurred when the precursor was heat-treated at 600 °C in air for 2 h. The stages of the formation of CuAl2O4, as well as the characterization of the resulting compounds were done using thermo–gravimetric analysis, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The products were analyzed by transmission electron microscopy and ultraviolet–visible (UV–Vis) spectroscopy to be round, about 17–26 nm in size and E g = 2.10 eV.  相似文献   

4.
A new red-emitting long afterglow Sr3Al2O6: Eu2+, Pr3+ phosphor was synthesized by sol–gel methods using Sr(NO3)2, Al(NO3)3·9H2O, Eu(NO3)3 and Pr(NO3)3 as raw materials. The crystalline structure of the phosphor powders were characterized by X-ray diffraction. Luminescent properties of the phosphor powders were analyzed by the fluorescence spectrophotometer. Sr3Al2O6: Eu2+, Pr3+ phosphor powders with single Sr3Al2O6 phase were prepared at 1200 °C for 2 h in the reducing atmosphere. Pr3+ doped made the light intensity and the light-lasting time of Sr3Al2O6: Eu2+, Pr3+ phosphors improved. The emission peaks of the Sr3Al2O6: Eu2+, Pr3+ phosphor powders lay at 612 nm with the excitation of 472 nm and the longest afterglow time could last for about 15 min at Pr3+ content of 0.06.  相似文献   

5.
An efficient adsorption system was developed for removal of hazardous Direct Blue 71 as a sample azo dye. The γ-Fe2O3@CuO adsorption system was synthesized based on a sol–gel combustion route and characterized by energy-dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) analysis, vibrating-sample magnetometry (VSM), and field-emission scanning electron microscopy (FESEM) techniques. The response surface methodology with Box–Behnken design was used to evaluate the effects of pH, shaking time, and adsorbent dose on dye adsorption. The results showed that solution pH was the parameter with greatest effect on dye adsorption. Adsorption equilibrium was reached quickly, within 8 min. Study of isotherms revealed adsorption capacity of 45.7 mg g?1 according to the Freundlich model. Sorbent regeneration could be performed using methanol–NaOH (0.1 mol L?1) solution.  相似文献   

6.
The Bi5FeTi3O15 (BFTO) films of layered structure have been fabricated on Pt/Ti/SiO2/Si substrates by the sol–gel method. The thermal decomposition behaviors of precursor powder were examined using thermo-gravimetric and differential scanning calorimeters analysis. The optimal heat treatment process for BFTO films were determined to be low-temperature drying at 200 °C for 4 min and high-temperature drying at 350 °C for 5 min followed by annealing at 740 °C for 60 min, which led to the formation of compact films with uniform grains of ~300 nm. The structural, surface topography, ferroelectric and magnetic properties of the films were investigated. The remnant polarization (2P r) of BFTO thin films under an applied electric field of ~550 kV/cm are determined to be 67.5 μC/cm2 . Meanwhile, the weak ferromagnetic properties of the BFTO films were observed at room temperature.  相似文献   

7.
Two mesoporous alumina samples were synthesized using the sol–gel method, and these samples were tested as catalysts in trichloroethylene combustion reaction. One alumina sample was doped with Fe to study the influence of a small amount of this agent on the characteristics and properties of alumina as a catalyst. Both catalysts (pure alumina and alumina doped with Fe) were thoroughly characterized by different techniques, such as DTA/TGA, FT-IR, XRD, SEM and TEM, and the porous characterization was conducted using a N2 physisorption technique. The doping agent presented a particular influence on the morphology and textural porosity in the alumina catalyst and therefore, it exhibited different catalytic behavior than the pure alumina catalyst. For both catalysts, the crystalline phase of γ-alumina was reported using XRD technique, and the crystallite size ranged from 7.8 to 12.8 nm. Using TEM images, the alumina catalyst doped with Fe revealed to contain a mixture of three types of iron oxide (maghemite, magnetite and hematite), mainly as roughly spherical nanoparticles. For both alumina catalysts, trichloroethylene catalytic combustion was conducted on a packed bed reactor in air at a temperature range of 50 to 600 °C. The alumina catalyst doped with Fe showed a higher catalytic activity than pure alumina, mainly due to the presence of micropores and grain morphology of flat faces.  相似文献   

8.
Aluminum molybdate was successfully synthesized using a simplified PVA assisted sol–gel method resulting in highly crystalline, monophasic (monoclinic P21/a) samples. These materials could readily be obtained at temperatures of 600 and 700 °C after calcining for as little as 15–20 min. Scanning electron microscopy and X-ray powder diffraction indicated that even the sample calcined at 600 °C for 20 min was free of impurities and composed of submicron sized particles (~300 nm). Transmission electron microscopy was used to confirm the monophasic character and submicron dimensions of the as-prepared powders. In addition to producing high quality samples, it was also observed that the metal to PVA ratio used during this simplified synthesis, could be used as a control parameter for tailoring the particle sizes of the final product.  相似文献   

9.
Nano-sized TiO2 was prepared using sol–gel process in microemulsion combining with solvent thermal technique. Response surface methodology was applied to optimize water/Triton X-100 molar ratio (w), n-hexanol/TX-100 molar ratio (m) and acetyl acetone/tetrabutyl titanate molar ratio (p) to influence the particle size (d), surface area (S), adsorptive capacity (G) and photocatalytic reaction rate (k). The relationship between responses (d, S, G and k) and preparation conditions (w, m and p) are followed second order polynomial equation and the coefficient is above 0.96. The smaller particle size, the bigger surface area it is accompanying the higher adsorption capacity and photocatalytic activity. The optimized experimental condition is w of 5.54, m of 7.41 and p of 0.44 with predicted particle size of 18.08 nm, surface area of 90.45 m2/g, adsorptive capacity of 9.63 mg/g and reaction rate of 0.12 min?1.  相似文献   

10.
In this paper, a novel nanoporous barium titanate (BaTiO3) crystalline powder was synthesized by using triblock poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) based systems (P-123) as the soft template via a sol–gel method and their structure-dependent electro rheological property was studied. The pore diameter and specific surface area of BaTiO3 were precisely controlled by varing the calcined temperature. The chemical composition, structure and surface morphology of BaTiO3 were characterized by X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and nitrogen adsorption–desorption method, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The result revealed that the pore volume and specific surface area of BaTiO3 decreased with the increment of calcined temperature. The electro rheological fluids (ERFs) were obtained by dispersing BaTiO3 crystallites in silicon oil and three kinds ERFs were fabricated by using three kinds of BaTiO3 which were prepared under different calcined temperature (550, 600 and 900 °C) as the precursors. The behaviors of the ERFs were evaluated via a rotational rheometer fixed with electric field generator. The results showed that electro rheological effect was related to the pore volume and specific surface area of BaTiO3. Due to the distinct advantage of sol–gel method for preparing nanoporous BaTiO3 without contamination of the materials, the markedly low current destiny of the ERFs was obtained. The yield stress of ERFs with large specific surface area of BaTiO3 reached the maximum of 3 kPa, which is higher than that of ERFs using traditional pure BaTiO3 crystallites (lower than 1 kPa).  相似文献   

11.
CaO–Al2O3/ZrO2 mixed oxide catalyst was prepared using free-solvent method. The catalyst was characterized using X-ray diffraction, BET surface area, acidity index (obtained by titration method), and scanning electron microscopy (SEM). With calcium aluminate and calcium zirconate been successfully formed, the mix exhibited small crystal size, high acidity, and large surface area, pore size, and pore volume, making it a catalyst of choice for biodiesel production. The activity of catalyst was evaluated in the course of esterification of oleic acid as well as transesterification of waste cooking oil (WCO) into biodiesel. Based on a four-variable central composite design (CCD), response surface methodology (RSM) was used to optimize effective variables on oleic acid conversion. The optimum yield of 94.68% was obtained at the following set of optimum conditions: reaction temperature of 120 °C, methanol/oleic acid molar ratio of 15.64, catalyst concentration of 2.94 wt%, and reaction time of 4 h; the result was in excellent agreement with the predicted values. Furthermore, under the optimum conditions, the catalyst succeeded to convert 93.48% of WCO into biodiesel.  相似文献   

12.
Nanocrystalline films of magnetite have been prepared by a novel sol–gel route in which, a solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. Coating solution showed Newtonian behaviour and viscosity was found as 0.0215 Pa.s. Annealing temperature was selected between 291 and 350 °C by DTA analysis in order to obtain magnetite films. In-plane grazing angle XRD and TEM studies showed that magnetite phase was present upon annealing the films at 300 °C. The films had crack free surfaces and their thicknesses varied between ~10 and 200 nm. UV–Vis spectrum results showed that transmittance of the films increases with decreasing annealing temperature and increasing spinning rate. Up to 96% transmittance was observed between the wavelengths of 900–1,100 nm. Vibrating sample magnetometer measurements indicated that magnetite thin films showed ferromagnetic behavior and the saturation magnetization value was found as ~35 emu/cm3.  相似文献   

13.
NiTiO3 (NTO) nanoparticles encapsulated with SiO2 were prepared by the sol–gel method resulting on core-shell structure. Changes on isoelectric point as a function of silica were evaluated by means of zeta potential. The NTO nanoparticles heat treated at 600°C were characterized by X-ray diffraction, transmission electron microscopy (TEM) and energy dispersive X-ray analysis. TEM observations showed that the mean size of NTO is in the range of 2.5–42.5 nm while the thickness of SiO2 shell attained 1.5–3.5 nm approximately.  相似文献   

14.
The high efficacy of iron-containing catalysts based on SiO2–Al2O3 systems obtained via sol–gel method in the oxidative destruction of carmoisine azo dye in aqueous solutions is demonstrated. It is found that the stability of the catalysts with respect to the leaching of iron ions into a solution during catalysis grows along with the aluminum content in the composition of aluminosilicate supports. It is concluded that the synthesized catalysts are promising materials for purifying wastewaters contaminated with organic dyes.  相似文献   

15.
The Er3+–Yb3+ codoped Al2O3 has been prepared by the sol–gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3 · 5H2O] and ytterbium nitrate [Yb(NO3)3 · 5H2O]. The phase structure, including only two crystalline types of doped Al2O3 phases, θ and γ, was obtained for the 1 mol% Er3+ and 5 mol% Yb3+ codoped Al2O3 at the sintering temperature of 1,273 K. By a 978 nm semiconductor laser diodes excitation, the visible up-conversion emissions centered at about 523, 545, and 660 nm were obtained. The temperature dependence of the green up-conversion emissions was studied over a wide temperature range of 300–825 K, and the reasonable agreement between the calculated temperature by the fluorescence intensity ratio (FIR) theory and the measured temperature proved that Er3+–Yb3+ codoped Al2O3 plays an important role in the application of high temperature sensor.  相似文献   

16.
Fly ash from coal combusting thermal power plants is a serious problem from the point of view of its storing and pollution of the environment. Currently, thermal power plants change the combustion technology from pulverized firing to fluidized bed combustion. A promising reutilization of the fly ash from fluidized bed combustion (FFA) shows itself in the ceramic industry. In this paper, the influence of the FFA content in illite-based ceramics on its thermophysical and elastic properties was investigated during heating and cooling stages of firing. The samples are made from a mixture of the illitic clay (60 mass%), various portion of FFA (0–40 mass%) and grog (40–0 mass%). The impulse excitation technique is used for the determination of Young’s modulus and the internal friction. Analyses that included DTA, TG, thermodilatometry, XRD and SEM are used to obtain the better understanding of the development of the phase transformations in the samples. It is found that a higher amount of FFA in the sample leads to a higher mass loss at low temperatures, a higher mass loss due to the decomposition of calcite, a less intensive shrinkage after firing, a lower bulk density and lower Young’s modulus during firing above 800 °C and after cooling. After firing of the samples at 1100 °C, the mechanical strength and Young’s modulus decrease with the FFA content. A linear relationship between Young’s modulus and the mechanical strength is observed.  相似文献   

17.
Nanocrystalline single-phase neodymium monoaluminate (NdAlO3) has been prepared from neodymium oxide and aluminium nitrate by modified Pechini’s method. Malic acid has been used for the first time as a new complexing agent in the sol–gel process. It has facilitated, without adding 1,2-ethanediol, a low-temperature synthesis at 1,050 °C compared to the temperature of 1,630 °C needed for the solid-state preparation. The characterisation of the nanoparticles has been carried out by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy in the range 75–4,000 cm−1. The smallest particles have size of 30 nm and are anisometric; agglomerates of particles have been also observed. The material has pyknometric density of 3.956 g/cm3 at T = 293.15 K and specific surface area 5.2 m2/g. The binding energies of O 1s, Al 2p, Nd 3d, and Nd 4d electrons have been found chemically shifted in NdAlO3 compared to the values for the respective elements.  相似文献   

18.
19.
Scanning electron microscopy, X-ray, and thermal analysis are used to examine the structure and properties of dispersive systems based on aluminum and zirconium oxides prepared electrochemically. The effect the conditions of synthesis have on the structure and morphology of Al2O3–ZrO2 particles is studied. It is shown that the effect of an electric field on the reaction medium allows us to adjust the physicоchemical properties and morphology.  相似文献   

20.
Via sol–gel processing metal–organic fibers were produced and dried up to 140 °C. For these gel fibers the influence of a treatment in different atmospheres was investigated for the temperature range of 200–850 °C. The atmospheres were nitrogen, water vapor, evaporated nitric and hydrochloric acid and evaporated hydrogen peroxide. In the presence of moisture and especially with acidic moisture fibers were transformed almost completely to their oxide composition (82 mol% Al2O3·18 mol% Y2O3). In these inorganic amorphous structures considerable differences were observed on several structural levels. On the atomic scale, the coordination of Al ions was investigated by 27Al MAS NMR and skeletal density by He-pycnometry. Porosity in the nm scale was characterized by N2-sorption. As a macroscopic effect of different treatment atmospheres, the longitudinal shrinkage was observed. For fibers treated at 500 °C the relative shrinkage varied by 100% (comparing water vapor and nitrogen atmosphere). No simple correlation between the release of organic constituents, the formation of porosity and the shrinkage could be found. These aspects were controlled by the rigidity of the inorganic network against atomic reconstitution. The kind of atmosphere was found to be an effective parameter to control various aspects of the xerogel structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号