首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alumina aerogels with surface areas from 460 to 840 m2/g and bulk densities from 0.025 to 0.079 g/cm3 were successfully fabricated using variations of an aluminum isopropoxide-based recipe developed by Armor and Carlson and the rapid supercritical extraction (RSCE) process developed at Union College. By utilizing the Union College RSCE method, it is possible to convert an alumina aerogel precursor mixture into aerogel monoliths in as little as 7.5 h. This process is safer than methanol extraction in an autoclave and faster and simpler than liquid CO2 solvent exchange and extraction. By increasing the concentration of aqueous HNO3 used in the precursor mixture, we were able to fabricate aerogels with significantly increased surface area, decreased bulk density, and altered microstructure. We attribute the observed variation in these aerogel properties at a given HNO3 concentration to environmental factors such as humidity. The ability to more easily fabricate alumina aerogels with desirable properties will assist in making them a viable option for catalytic and other applications.  相似文献   

2.
A high‐throughput, rapid, sensitive, environmentally friendly, and economical supercritical fluid chromatography with triple quadruple mass spectrometry method was established and validated for the first time to determine a cerebral stroke treatment drug named 3‐n‐butylphthalide in dog plasma. Plasma samples were prepared by protein precipitation with methanol and the analytes were eluted on an ACQUITY UPC2TM HSS‐C18 SB column (3 × 100 mm, 1.8 μm) maintained at 50°C. The mobile phase comprised supercritical carbon dioxide/methanol (90:10, v/v) at a flow rate of 1.5 mL/min, the compensation solvent was methanol at a flow rate of 0.2 mL/min and the total run time was 1.5 min per sample. The detection was carried out on a tandem mass spectrometer with an electrospray ionization source. Calibration curves were linear over the concentration range of 1.02–1021.00 ng/mL (r2 ≥ 0.993) with the lower limit of quantification of 1.02 ng/mL. The intra‐ and inter‐day precision values were below 15% and the accuracy was from 97.90 to 103.70% at all quality control levels. The method was suitable for a pharmacokinetic study of 3‐n‐butylphthalide in beagle dogs.  相似文献   

3.
Hydrophobic silica aerogels have been prepared using the rapid supercritical extraction (RSCE) technique. The RSCE technique is a one-step methanol supercritical extraction method for producing aerogel monoliths in 3 to 8 h. Standard aerogels were prepared from a tetramethoxysilane (TMOS) recipe with a molar ratio of TMOS:MeOH:H2O:NH4OH of 1.0:12.0:4.0:7.4 × 10−3. Hydrophobic aerogels were prepared using the same recipe except the TMOS was replaced with a mixture of TMOS and one of the following organosilane co-precursors: methytrimethoxysilane (MTMS), ethyltrimethoxysilane (ETMS), or propyltrimeth-oxysilane (PTMS). Results show that, by increasing the amount of catalyst and increasing gelation time, monolithic aerogels can be prepared out of volume mixtures including up to 75% MTMS, 50% ETMS or 50% PTMS in 7.5–15 h. As the amount of co-precursor is increased the aerogels become more hydrophobic (sessile tests with water droplets yield contact angles up to 155°) and less transparent (transmission through a 12.2-mm thick sample decreases from 83 to 50% at 800 nm). The skeletal and bulk density decrease and the surface area increases (550–760 m2/g) when TMOS is substituted with increasing amounts of MTMS. The amount of co-precursor does not affect the thermal conductivity. SEM imaging shows significant differences in the nanostructure for the most hydrophobic surfaces.  相似文献   

4.
Experimental results on the physico-chemical properties of ambiently dried sodium silicate based aerogels catalyzed with various acids are reported. The aerogels were prepared by hydrolysis and polycondensation of sodium silicate followed by subsequent washings, surface chemical modification and ambient pressure drying using 10 various acid catalysts consisting of strong and weak acids. The strength and concentration of acids have the major effect on the gelation of sol and hence the physico-chemical properties of the silica aerogels. Strong acids such as HCl, HNO3 and H2SO4 resulted in shrunk (70–95%) aerogels whereas weak acids such as citric and tartaric acids resulted in less shrunk (34–50%) aerogels. The physical properties of silica aerogels were studied by measuring bulk density, volume shrinkage (%), porosity (%), pore volume, thermal conductivity, contact angle with water, Transmission Electron Microscopy (TEM), Atomic Absorption Spectroscopy (AAS), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric-Differential Thermal (TG-DT) analyses and N2 adsorption–desorption BET surface analyzer. The best quality silica aerogels in terms of low density (0.086 g/cm3), low volume shrinkage (34%), high porosity (95%), low thermal conductivity (0.09 W/m K) and hydrophobic (148°) were obtained for molar ratio of Na2SiO3:H2O:citric acid:TMCS at 1:146.67:0.72:9.46 with 20 min gelation time. The resulting aerogels exhibited the thermal stability up to around 420 °C.  相似文献   

5.
The successful incorporation of multiwalled carbon nanotubes (MWCNTs) into silica aerogels prepared by sol–gel method is reported herein. Pure silica aerogels prepared using sodium silicate precursor by ambient pressure drying are so fragile that they cannot be used easily. MWCNTs were used as reinforcements to improve the mechanical properties of silica aerogels. Results show that inserting small amounts of MWCNTs in the gels causes enhanced dimensional stability of silica aerogels. The silica aerogels were prepared by doping MWCNTs in silica matrix before gelation. The influence of MWCNTs on some microstructural aspects of silica matrix has been studied using nitrogen adsorption–desorption isotherms. From SEM study it is confirmed that the silica particles get capped on the surface of MWCNTs suggesting an enhanced toughness. Further, FTIR, Raman, EDAX, thermal conductivity and hydrophobicity studies of these doped aerogels were carried out. By addition of MWCNTs, silica aerogels were formed with 706 m2/g BET and 1,200 m2/g Langmuir surface areas and 149o contact angle. Low density (0.052 g/cc) and low thermal conductivity (0.067 W/m K) MWCNTs doped silica aerogels were obtained for the molar ratio of Na2SiO3::H2O::MWCNTs::citric acid::TMCS at 1::146.67::2.5 × 10−3::0.54::9.46 respectively with improved mechanical strength.  相似文献   

6.
The effect of iron acetylacetonate on the physico-chemical properties of waterglass based silica aerogels by ambient pressure drying has been investigated. Doping the gels with iron acetylacetonat (FeAA) facilitates in the diminution of the density of the aerogels. The well established silica network provides effective confinement of FeAA nanoparticles which resists the collapse of silica network during ambient pressure drying. Therefore, in the present paper, the effects of FeAA on the physico-chemical properties of the aerogels have been studied by varying the FeAA:Na2SiO3 molar ratio from 3 × 10−4 to 6 × 10−4. The aerogels were prepared via ambient pressure drying and characterized by the bulk density, thermal conductivity and water contact angle. The aerogel’s surface morphology, elemental analysis and pore structure were characterized by means of EDAX and FTIR, TEM and N2 adsorption- desorption analyzer. The high temperature hydrophobicity of these aerogels was checked by heating them in temperature controlled furnace. Silica aerogels with low density ~0.050 g/cc have been obtained using the molar ratio of Na2SiO3:H2O:FeAA:Citric acid:TMCS at 1:146.67:3 × 10−4:0.54:9.46, respectively. EDAX and FTIR studies show that the iron species are entrapped in the mesoporous framework and not took part in the bonding with silica.  相似文献   

7.
Interest in improving the optical transmission of sodium silicate-based aerogels by ambient pressure drying led to the synthesis of aerogels using a two-step sol–gel process. To produce optically transparent silica aerogel granules, NH4F (1 M) and HCl (4 M) were used as hydrolyzing and condensation catalysts, respectively. The silica aerogels were characterized by their bulk density, porosity (%), contact angle and thermal conductivity. Optical transmission of as synthesized aerogels was studied by comparing the photos of aerogel granules. Scanning electron microscopic study showed the presence of fractal structures in these aerogels. The degree of transparency in two step sol–gel process-based aerogels is higher than the conventional single step aerogels. The N2 adsorption–desorption analysis depicts that the two step sol–gel based aerogels have large surface areas. Optically transparent silica aerogels with a low density of ∼0.125 g/cc, low thermal conductivity of ∼0.128 W/mK and higher Brunauer, Emmett, and Teller surface area of ∼425 m2/g were obtained by using NH4F (1 M), HCl (4 M), and a molar ratio of Na2SiO3::H2O::trimethylchlorosilane of 1::146.67::9.46. The aerogels retained their hydrophobicity up to 500 °C.  相似文献   

8.
A rapid and cost‐effective method based on microwave‐assisted extraction followed by capillary electrophoresis was developed for simultaneous quantification of seven alkaloids in Corydalis decumbens for the first time. The main parameters affecting microwave‐assisted extraction and capillary electrophoresis separation were investigated and optimized. The optimal microwave‐assisted extraction was performed at 40°C for 5 min using methanol/water (90:10, v/v) as the extracting solvent. Electrophoretic separation was achieved within 15 min using an uncoated fused‐silica capillary (50 μm internal diameter and 27.7 cm effective length) and a 500 mM Tris buffer containing 45% v/v methanol (titrated to pH* 2.86 with H3PO4). The developed method was successfully applied to the quantification of seven alkaloids in Corydalis decumbens obtained from different regions of China. The combination of microwave‐assisted extraction with capillary electrophoresis was an effective method for the rapid analysis of the alkaloids in Corydalis decumbens .  相似文献   

9.
In continuation to our earlier work on aerogels, the experimental results on the monolithicity and physical properties of silica aerogels as a function of the molar ratios of tetramethoxysilane (TMOS) precursor, catalyst (NH4OH), methanol (MeOH) solvent and water, are reported. The molar ratios of NH4OH/TMOS, MeOH/TMOS and H2O/TMOS were varied from 7.1 × 10–6 to 9.6 × 10–1, 1 to 90 and 1 to 18 respectively. It has been found that larger molar ratios of NH4OH/TMOS (10–2), MeOH/TMOS (13 to 60) and H2O/TMOS (>10) resulted in transparent but cracked aerogels, and very low molar ratios of these combinations gave monolithic but less transparent or opaque aerogels. The best quality silica aerogels, in terms of monolithicity, transparency and low density, have been obtained with TMOS:MeOH:H2O:NH4OH in the molar ratio of 1:12:4:3.7 × 10–3 respectively. The aerogels have been characterized by density, optical transmission, surface area and porosity measurements. The results have been discussed by taking into account the hydrolysis and condensation reactions, and syneresis effects.  相似文献   

10.
A rapid high‐performance liquid chromatography–tandem mass spectrometry method has been developed and validated for simultaneous measurement of venlafaxine and O‐desmethylvenlafaxine in human plasma using fluoxetine as an internal standard. In the liquid–liquid extraction method, compounds and internal standard were extracted from plasma using methyl tertiary butyl ether as an extraction solvent. The HPLC separation of the analytes was performed on a Zorbax SB‐C18, 50 × 4.6 mm, 5 µm column, using a isocratic elution program using a mobile phase consisting of HPLC‐grade methanol: 5 mm ammonium acetate (80:20 v/v) at a flow‐rate of 1.0 mL/min with a total runtime of 3.0 min. The proposed method has been validated with a linear range of 4–400 ng/mL for venlafaxine and 5–500 ng/mL for O‐desmethyl venlafaxine. The method was applied for a bio‐equivalence study of 75 mg tablets formulation in 32 Indian male healthy subjects under fasting conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Reversed‐phase and size‐exclusion liquid chromatography methods were validated for the assessment of streptokinase. The reversed‐phase method was carried out on a Jupiter C4 column (250 mm × 4.6 mm id) maintained at 25°C. The mobile phase consisted of 50 mM sodium sulfate solution pH 7.0 and methanol (90:10, v/v), run isocratically at a flow rate of 0.8 mL/min. The size‐exclusion method was carried out on a Protein KW 802.5 column (300 mm × 8.0 mm id), at 25°C. The mobile phase consisted of 40 mM sodium acetate solution pH 7.0, run isocratically at a flow rate of 1.0 mL/min. Retention times were 19.3 min, and 14.1 min, and calibration curves were linear over the concentration range of 0.25–250 μg/mL (25.75–25 750 IU/mL) (r 2 = 0.9997) and 5–80 μg/mL (515–8240 IU/mL) (r 2 = 0.9996), respectively, for reversed‐phase and size exclusion, with detection at 220 and 204 nm. Chromatographic methods were employed in conjunction with the in vitro bioassay for the content/potency assessment of Streptokinase, contributing to improve the quality control and ensure the efficacy of the biotherapeutic.  相似文献   

12.
A simple and sensitive high‐performance liquid chromatographic procedure for the determination of the trans isomer of glimepiride is reported. Chromatography accomplished direct separation of the cis and trans isomers of glimepiride on a Dikmonsil C18 (250×4.6 mm, 5 μm) column with a mobile phase consisting of methanol‐acetonitrile‐NH4Ac buffer solution (1.5 mol L–1, pH = 4.5) (1.1 : 1.3 : 1.0, v/v) at a flow rate 0.5 mL min–1. The resolution (RS) was 1.73 with a retention time of 24.885 and 23.018 min for the cis and the trans isomer, respectively. A standard linear calibration curve was established for the trans isomer of glimepiride over the range of 4.95–198.00 μg mL–1 with a correlation coefficient of 0.99997. This method has been successfully used to analyze four different kinds of glimepiride product.  相似文献   

13.
A rapid reversed-phase (RP) high-performance liquid chromatography method for the isolation of bilirubin from its photoproducts (e.g., biliverdin) is reported. The method is based on isocratic elution using methanol:water as the mobile phase. A 24 full-factorial experimental design approach was adopted. For the optimization, the best separation was obtained using a flow rate of 1.50 mL/min, a mobile phase of 99∶1 methanol:water (v/v) at pH 3.60, and a 150×4.6 mm id RP (C18) column containing 5-μm particles. These conditions produced the fastest total retention time of 3.38±0.055 min, and other chromatographic parameters were acceptable. Under the optimum conditions, a linear calibration curve for bilirubin was obtained over the 1.0–40.0 μg/L concentration range studied. The limit of quantification was 0.79 g/L and the limit of detection was 0.24 μg/L. Bilirubin in solution was monitored by ultraviolet detection at 450 nm.  相似文献   

14.

Visible-light-driven heterostructure Ag/Bi2WO6 nanocomposites were prepared by transforming Ag+ ions into metallic Ag0 nanoparticles loaded on top of Bi2WO6 nanoplates under visible light irradiation for 1 h. XRD, XPS, SEM and TEM analyses indicated that spherical metallic Ag nanoparticles were uniformly dispersed on top of orthorhombic Bi2WO6 thin nanoplates. Rhodamine B (RhB) was used as a dye model for investigation of photocatalytic performance of Bi2WO6 nanoplates with different weight contents of Ag nanoparticles illuminated by visible radiation. In this research, 10% Ag/Bi2WO6 nanocomposites have the highest photocatalytic activity in the degradation of RhB at 94.21% within 210 min because of the rapid diffusion of electronic charge through the Schottky barrier between metallic Ag nanoparticles and Bi2WO6 thin nanoplates, good electrical conductivity of metallic Ag nanoparticles, inhibited recombination of charge carriers and enhanced photocatalytic activity of Ag/Bi2WO6 nanocomposites. Main active species of the photocatalysis and stability of the photocatalyst were also evaluated.

  相似文献   

15.
The influence of the preparation method on the microstructure and catalytic behavior of Rh and Ni dispersed on TiO2-SiO2 aerogels is investigated.The autoclave method has been followed to prepare titania-silica aerogels with TiO2 contents ranging between 0 and 10 mole %. These aerogels have been used as matrices to disperse catalytically active metals: Rh and Ni. The metals can be deposited by impregnation of aerogels, or alternatively, can be added into the hydrolysis water used in the synthesis of gels. The resulting catalysts present surface areas higher than 550 m2·g–1.The percentage of titania, the method followed for the introduction of the metal, and the nature of the metal itself affect both the activities and selectivities of the catalysts in the hydrogenolysis of n-butane. Thus, the presence of titania in Rh catalysts increases the activity values, and the samples prepared by impregnation present selectivities towards ethane higher than 80%. Whereas, the rhodium catalysts in which the metal has been introduced before gelling, do not orientate the reaction in favor of a definite product. For the case of Ni, it is quite frequent to obtain high selectivities towards the breakdown of the C-C terminal bonds. In summary, the preparation methods allow to modulate into very broad limits the catalytic behavior of the samples.  相似文献   

16.
The hydrophobic property is one of the most important requirements for the long-term use of silica aerogels for transparent or translucent window insulation and opaque thermal insulating systems. Therefore, the present paper deals with the synthesis and characterization of hydrophobic silica aerogels using trimethylethoxysilane (TMES) as a co-precursor. Silica sol was prepared by keeping the molar ratio of tetramethoxysilane (TMOS) precursor, methanol (MeOH) solvent, water (H2O) and ammonia (NH4OH) catalyst constant at 1:12:4:3.7 × 10–3 respectively throughout the experiments and the TMES/TMOS molar ratio (A) was varied from 0 to 2.35. The resulting silica alcogels were dried supercritically by high-temperature alcohol solvent extraction. Hydrophobicity of the aerogels was tested by measuring the percentage of water adsorbed by the aerogels after putting them directly on the surface of water under humid conditions. Alternately, the hydrophobicity was also tested by contact angle measurements. It was found that as the A value increased, the hydrophobicity of the aerogels increased but the optical transmission decreased from 93% to less than 5% in the visible range. The thermal stability of the aerogels was studied in the temperature range from 25 to 400°C. The hydrophobic nature of the aerogels was maintained up to a temperature of 300°C. The aerogels were characterized by infrared spectroscopy, optical transmittance, Scanning electron microscopy (SEM) and contact angle measurements. The results have been discussed by taking into account the hydrolysis and condensation mechanisms.  相似文献   

17.
A quantitative and fast method of dissolution of refractory thoria (ThO2) was developed for the determination of thorium (Th) in a given sample. The dissolution of sintered ThO2 powder, microspheres and pellets using 88% phosphoric acid was investigated. The conditions of quantitative dissolution of ThO2 microspheres were optimized by conventional heating in autoclave and also by microwave heating. 100 mg of sintered ThO2 microspheres were dissolved in 8 g of phosphoric acid in an autoclave, and heating at 170 °C for 3 h, in comparison to 5 g of phosphoric acid by microwave heating (375 W) at 220 °C for 1 h. Dissolution studies on the powder form of sintered ThO2 were also performed. 1 g of sintered ThO2 powder could be dissolved in 6.5 g of phosphoric acid in autoclave heating at 170 °C for 1 h. Strong complexing of (PO4)3− with Th4+ may be the influencing factor for quantitative dissolution of ThO2.  相似文献   

18.
In the present paper the experimental results of the effect of sol-gel processing temperature on the physical properties of the TEOS based silica aerogels are reported and discussed. The aerogels were produced by the two step sol-gel process at various temperatures in the range of 26–70∘;C followed by supercritical drying using methanol solvent extraction. A remarkable reduction in the gelation time was observed from three and a half days at room temperature to a mere 18 hours at 50∘;C. The best quality aerogels in terms of low density and high optical transmission were obtained for 6 hours hydrolysis time. The aerogels were characterized by the measurements of bulk density, volume shrinkage, porosity, refractive index and optical transmission. Monolithic aerogels with ultra low density (∼0.018 g/cm3), extremely high porosity (∼99%) and optimum optical transmission at 700 nm (∼75%) were obtained for the molar ratio of TEOS:MeOH:acidic water:basic water at 1:99:10.42:14.58 respectively.  相似文献   

19.
An online supercritical fluid extraction with supercritical fluid chromatography system could provide sequential extraction and quantitative analysis of lignans in Schisandra chinensis. Supercritical fluid extraction conditions were optimized at 15 MPa, 50°C, and 4 min with supercritical CO2 adding 1% methanol; the elution volume and flow rate were set at 6 mL and 2 mL/min to blow extract out of the tank completely. The split‐flow rate was confirmed at 2.5%, which determines injection volume and accuracy of quantitative detection. The factors having negative influences on supercritical fluid chromatography retention in the online system, including sample loading forms and backpressure settings, are discussed in the paper. At last, an extraction‐quantitative method for lignans in Schisandra chinensis was developed, which could be finished within 19.5 min. The total content percentage of four lignans (Schisandrin, Schisandrin A, Schisandrin B and Schisandrol B) in four batches was respectively measured to be 1.42, 1.54, 1.62, and 1.90%.  相似文献   

20.
A highly sensitive, specific and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) analytical method has been developed and validated for the determination of ospemifene in human plasma using ospemifene‐d4 as an internal standard. Solid‐phase extraction technique with Phenomenex Strata X‐33 μm polymeric sorbent cartridges (30 mg/1 mL) was used to extract the analytes from the plasma. The chromatographic separation was achieved on Agilent Eclipse XDB‐Phenyl, 4.6 × 75 mm, 3.5 μm column using the mobile phase composition of methanol and 20 mm ammonium formate buffer (90:10, v/v) at a flow rate of 0.9 mL/min. A detailed method validation was performed as per the US Food and Drug Administration guidelines and the calibration curve obtained was linear (r2 = 99) over the concentration range 5.02–3025 ng/mL. The API‐4500 MS/MS was operated under multiple reaction monitoring mode during the analysis. The proposed method was successfully applied to a pharmacokinetic study in healthy human volunteers after oral administration of an ospemifene 60 mg tablet under fed conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号