首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our goal in this research was to obtain lead oxide nano-powders by sol–gel method. In this method, lead oxide nano-powders were synthesized through the reaction of citric acid (C6H7O8·H2O) solution and lead acetate [Pb(C2H3O2)2] solution as stabilizer and precursor, respectively. The effect of different parameters including calcination temperature, (molar ratio of citric acid to lead acetate) and drying conditions were investigated. The prepared lead oxide nano-powders were characterized by FT-IR spectroscopy, X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The prepared PbO samples consist of the particles in the range of 50–120 nm or the thick plate like structures with thickness of 53 nm depending on the drying conditions.  相似文献   

2.
Nanocrystalline SnO2 particles have been synthesized by a sol–gel method from the very simple starting material granulated tin. The synthesis leads a sol–gel process when citric acid is introduced in the solution obtained by dissolving granulated tin in HNO3. Citric acid has a great effect on stabilizing the precursor solution, and slows down the hydrolysis and condensation processes. The obtained SnO2 particles range from 2.8 to 5.1 nm in size and 289–143 m2 g−1 in specific surface area when the gel is heat treated at different temperatures. The particles show a lattice expansion with the reduction in particle size. With the absence of citric acid, the precursor hydrolyzes and condenses in an uncontrollable manner and the obtained SnO2 nanocrystallites are comparatively larger in size and broader in size distribution. The nanocrystallites have been characterized by means of TG-DSC, FT-IR, XRD, BET and TEM.  相似文献   

3.
Without using any acid or base catalyst, complexing agent or zirconium alkoxides, ZrO2–SiO2 mixed oxide with the ZrO2 content of 50 mol% was prepared by combination of sol–gel and alcohol-aqueous heating method using zirconyl nitrate and tetraethoxysilane as starting materials. The structural and surface acidic properties were characterized by FT-IR, XRD, NH3-TPD and pyridine adsorption FTIR. Compared with another mixed oxide with the same ZrO2 content prepared by mechanical grinding, the obtained ZrO2–SiO2 mixed oxide was homogeneously mixed in molecular level. The existed Zr–O–Si hetero-linkages strongly retarded the ZrO2 particle growth. The obtained mixed oxide maintained amorphous phase until it was calcined at 1,173 K for 3 h when crystallization of tetragonal zirconia took place. NH3-TPD and pyridine adsorption FTIR showed that both Brønsted and Lewis acidity were largely developed in the mixed oxide and most of the acidic sites belonged to the medium acidity. Because of the existence of abundant medium acidity, the mixed oxide showed catalytic activity for tetrahydrofuran polymerization. Furthermore, the produced poly tetramethylene ether glycol had moderate average molecular weight around 2,000. Neither the pure oxides nor the mixed oxide prepared by the mechanical grinding presented catalytic activity for this reaction.  相似文献   

4.
Mixed metal oxides in the nanoscale are of great interest for many aspects of energy related research topics as water splitting, fuel cells and battery technology. The development of scalable, cost-efficient and robust synthetic routes toward well-defined solid state structures is a major objective in this field.While monometallic oxides have been studied in much detail, reliable synthetic recipes targeting specific crystal structures of mixed metal oxide nanoparticles are largely missing. Yet, in order to meet the requirements for a broad range of technical implementation it is necessary to tailor the properties of mixed metal oxides to the particular purpose. Here, we present a study on the impact of the nature of the gas environment on the resulting crystal structure during a post-synthesis thermal heat treatment of manganese–cobalt oxide nanoparticles. We monitor the evolution of the crystal phase structure as the gas atmosphere is altered from pure nitrogen to synthetic air and pure oxygen. The particle size and homogeneity of the resulting nanoparticles increase with oxygen content, while the crystal structure gradually changes from rocksalt-like to pure spinel. We find the composition of the particles to be independent of the gas atmosphere. The manganese–cobalt oxide nanoparticles exhibited promising electrocatalytic activity regarding oxygen evolution in alkaline electrolyte. These findings offer new synthesis pathways for the direct preparation of versatile utilizable mixed metal oxides.  相似文献   

5.
Fluorine doped SnO2 nanostructures were grown using ultrasonic assisted sol–gel method. The gel was obtained by dissolving stannous chloride in methanol with ammonium fluoride as dopant followed by irradiation with ultrasonic vibrations. Obtained samples were characterized by structural, morphological and optical studies. All the peaks in the X-ray diffractograms are identified and indexed as tetragonal cassiterite structure. Negative slope of Williamson–Hall plots indicates compressive strain. Particle size of SnO2 nanostructures is decreases with increases in concentration of fluorine doping. Atomic force microscopy, scanning electron microscopy and transmission electron microscopy studies confirm the formation of ring like porous structures and then hollow tube like growth with increase in the fluorine concentration. Peaks in Raman spectra also indicate strong confinement in SnO2 particles. Distinct peaks in the PL spectra make the structure suitable for photovoltaic applications.  相似文献   

6.
7.
8.
ZrO2SiO2 aerogel modified by Fe(III) ion was prepared and the stability of the samples under high temperature was investigated. The structure and properties of modified aerogels were characterized by N2 adsorption–desorption, FT-IR, XRD and TEM. The samples still contain a specific surface area about 228 m2/g after 1,000 °C 0.5 h calcinations. The inhibition of ZrO2 particle growth is attributed to the Fe(III) ion modified aerogel surface, which strongly retards the ZrO2 tetragonal phase transformation as well.  相似文献   

9.
Silica-based mixed oxide xerogels, namely SiO2–CrO3, SiO2–MoO3, and SiO2–WO3, were prepared using the non-hydrolytic sol–gel process. The materials were synthesized using metal chloride:tetraethoxysilane (TEOS) molar ratios of 0.1:2; 0.2:2 and 0.4:2 for each metal chloride and 1:2 SiCl4:TEOS molar ratio. All of the xerogels containing Cr, Mo or W had considerably greater surface areas than that of SiO2. The small angle X-ray scattering experiments suggest that the surface roughness of the aggregates in SiO2–CrO3 is less than that of SiO2–MoO3 and SiO2–WO3. The morphological characteristics of the silica-based mixed oxide xerogels were not affected by the nature and amount of metal chloride employed in the synthesis. An irregular morphology was observed for SiO2–CrO3, SiO2–MoO3 and SiO2–WO3, but a lamellar structure was observed for SiO2. X-ray photoelectron spectroscopy analysis suggests that tungsten species were preferentially distributed on the outmost part of the grain. The resulting particle diameter was shown to be lower for the mixed oxides compared to that of bare silica. Furthermore, the presence of metals (Cr, Mo and W) on silica caused a decrease in the size of the particles as the atomic radii of these metals increased. According to the Fourier transform infrared spectroscopy and Raman, Cr, Mo and W were incorporated within the silica framework.  相似文献   

10.
11.
The N-doped TiO2 has been synthesized by sol?Cgel method, using titanium isopropoxide, isopropanol and an aqueous solution of ammonia with ratio 2:1:10. The concentrations used for the NH3 aqueous solution were 3, 7, 10 and 15?%. The samples have been analysed by X-ray diffraction, electron microscopy (SEM and TEM) thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), micro-Raman spectroscopy and diffuse reflectivity. TEM, SEM, DSC and TGA showed that the morphology is influenced by the presence of N3? ions but not by the concentration of the solution. Instead reflectance gave us a relation between values of the energy gap and the concentration of N3? ions: the gap between valence and conduction band lowers as the concentration of NH3 in the starting solution increases. From these results we can say that the properties of the material have been tuned by doping with nitrogen ions because the particles absorb more light in the visible range, and this is important for photovoltaic and photocatalytic applications.  相似文献   

12.
The Na2O–CaO–SiO2 ternary glass–ceramic with the composition of 49 mass% Na2O, 20 mass% CaO, and 31 mass% SiO2 was prepared by the conventional method. The ternary glass–ceramic was characterized using X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy techniques. The Na2CaSiO4 phase, having the cubic crystal system, with the crystallite size of 25.14 nm and lattice parameter of 0.7506 nm was determined from the XRD pattern. The activation energy of the glass–ceramic calculated from the DTA curves was found to be 162.02 kJ mol?1. The Avrami exponent was found to be ~2 indicating a one-dimensional growth process. The mass loss percent from ambient temperature to 1,173 K is less than 1 %. The density was calculated to be 2,723 kg m?3. The fine-grained microstructure with the particle sizes less than 1 μm was confirmed by the scanning electron microscope micrograph.  相似文献   

13.
Here, we report a novel strategy to prepare fluorescent semiconductor quantum dots (QDs) of core–shell type with CdSe–CdS QDs as a model system. Our synthesis was carried out in liquid paraffin, which is a natural, nontoxic, and cheap solvent. We applied a single injection of precursor for the shell growth at low temperature and gradual heating of the reaction mixture after that. By this manner, the Ostwald ripening of the cores was reduced, homogenous nucleation of the shell material was avoided, and highly monodisperse in size core–shell QDs were prepared. Our synthesis method allows working on open air; it is relatively fast and allows fine control over the shell growth process. It leads to the formation of core–shell CdSe–CdS QDs with fluorescence quantum yield as high as 65%. We described the optical properties of core–shell QDs by the model of attenuated quantum confinement.  相似文献   

14.
GEL combustion technique was applied to obtain oxides of thorium and cerium from their respective nitrate solutions using citric acid as the gelating agent. The dried samples were characterized by IR and TG studies. Intermediate and final products during TG studies have been isolated and characterized by XRD studies. All the TG runs during heating of thorium and cerium nitrate with citric acid dried Gels showed a two step process. The weight loss at each step and the X-ray data of the product at each step, helped in suggesting a possible mechanism. Kinetic study was carried out independently for each step. The reaction mechanism as observed during interactive procedure was found to be diffusion controlled. The kinetic parameters (activation energy and pre-exponential factor) for each step in all reactions have been calculated. Observations from XRD studies show that with increase in cerium concentration in the oxides, the lattice parameter values have shown a decreasing trend for all the five compositions studied. It was observed that in TG studies with increase in cerium concentration, the final temperature of the reactions have shown a decreasing trend. SEM studies of the powders reveal that synthesized oxides have a tendency to form agglomerate of varying size ranging from 50 to 100 μm in case of mixed oxides but the size of thorium oxide powder so synthesized have pore size 10–100 μm. SEM images shows that GEL combustion may result in agglomeration, if the temperature is not properly controlled to the desired value. SEM studies also reveal that each agglomerate contains approximately 10–100 individual particles. Surface area of the mixed oxide powders were determined using Gas adsorption technique. The surface area was found to be in the range of 3–17 m2/g in all cases. Specific surface area of thorium oxide was found to be lesser than cerium oxide but in case of mixed oxides surface area decreases with increase in cerium content. Majority of pores, indicating the particle size are in the range of 0.01–0.04 cm3/g.  相似文献   

15.
Journal of Thermal Analysis and Calorimetry - Industrially relevant nanopowder was synthesised by microwave hydrothermal synthesis to obtain well-controlled composition (ZrO2–AlO(OH) system)...  相似文献   

16.
The aggregation stability of 1 : 1 and 3 : 1 (by volume) binary mixtures of two hydrophobic (SiO2–FeOOH), one hydrophobic and one hydrophilic (SiO2–ZrO2, SiO2–CeO2), and two hydrophilic (CeO2–natural diamond) sols was studied by photometry over a wide range of KCl concentrations at pH 6 and 3. The stability of the mixed binary sols was determined by the stability of the sol with a predominant particle number concentration. In the SiO2–FeOOH system, the phenomenon of heteroadagulation stabilization was caused by the electrostatic factor of the stability of adsorbed SiO2 particles and, in the SiO2–ZrO2 system, by the structural factor of the stability of adsorbed hydrophilic ZrO2 particles. The stability of binary mixtures containing one or two hydrophobic components is qualitatively explained in terms of the Derjaguin theory of heterocoagulation of hydrophobic colloids. The stability of the binary system of two hydrophilic components (CeO2–natural diamond) is determined by the structural component of the interaction energy of particles.  相似文献   

17.
Varying amounts of Na and K doped lanthanum–titanium oxides were synthesized by gel entrapment technique. These ceramics were characterized by X-ray diffraction. Microstructural investigations revealed grain growth in the doped material compared to undoped sample. Dielectric relaxations of these compounds were investigated in the temperature range 250–900 °C. A high degree of dispersion of the permittivity of un-doped lanthanum–titanium oxide and K and Na doped lanthanum–titanium oxide was observed in the frequency range <100 kHz which was attributed to oxygen vacancies. An increase in the permittivity values were observed with 1 % Na and K doped samples. The permittivity values further deteriorated with the dopant concentration. Using the Cole–Cole model, an analysis of the dielectric loss with frequency was performed, assuming a distribution of relaxation time. The dielectric loss was found to decrease by doping K in lanthanum–titanium oxide matrix. The dc conductivity studies showed that a temperature dependent hopping type mechanism is responsible for electrical conduction in the system.  相似文献   

18.
Silica–titania mixed oxide were prepared by sol–gel method from tetraethylorthosilicate and titanium (IV) isopropoxide as precursors in the presence of room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [C4MIm][NTf2]. The effects of [C4MIm][NTf2] on the structural and textural characteristics of silica–titania matrix are investigated in this paper. The materials obtained were well characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis X-ray powder diffraction (XRPD), field emission scanning electron microscope (FESEM) and N2 adsorption–desorption analysis. It is believed that the [C4MIm][NTf2] plays an important role as a template and the high surface area of the samples is thought to mainly attribute to the formation of microporous in the reaction. The synthesized materials showed the presence of C–N groups in the FTIR spectrum which indicates the presence of RTIL in the silica–titania matrix. XRPD, FESEM and N2 adsorption–desorption analysis results indicated that the composite materials possessed good microporous character. The subsequent material displayed average pore diameter of 1.70–2.12 nm, pore volume of 0.08–0.19 cm3/g and BET surface area of 191–386 m2/g. Increasing the content of RTIL resulted in an increase of the average pore diameter of the silica–titania gel.  相似文献   

19.
20.
Liu  Yueyu  Yin  Zhili  Wang  Ziqing  Mou  Ronglin  Wei  Zhong 《Research on Chemical Intermediates》2022,48(6):2557-2573

High surface area ZrO2–KOH sample was prepared and used the catalyst for the synthesis of glycerol carbonate (GC) from dimethyl carbonate (DMC) and glycerol. The structure properties of ZrO2–KOH were characterized by XRD, BET, CO2-TPD, XPS, and ICP-OES. It was found that the strong basicity of ZrO2–KOH might be attributed to the oxygen vacancies as well as the big surface area. Experiments were developed to evaluate the effects of catalysis loading, proportion of reactants, temperature and reaction time on the conversion of glycerol to GC. The consequences showed that ZrO2–KOH was a highly efficient basic catalyst for synthesis of GC from glycerol. The catalytic performance of ZrO2–KOH is much better than that of ZrO2–KOH–CP, ZrO2–NH4OH, and some reported heterogeneous catalysts. And the higher performance of ZrO2–KOH was ascribed to the strong basicity. 99.43% conversion was obtained in a particular situation of catalyst/glycerol weight ratio of 3 wt%, DMC/glycerol molar ratio of 3:1, reaction temperature of 80 °C, and reaction time of 2 h. The plausible reaction mechanism for the transesterification on the strong basic active sites was discussed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号