首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic chitosan microspheres were prepared by the emulsification cross-linking technique in the presence of glutaraldehyde as cross-linking agent, liquid paraffin as dispersant, and Span-80 as emulsifier. The optimal cross-linking time and Co0.5Ni0.5Fe2O4: chitosan ratio were determined. The morphology of particles was studied by different techniques. The adsorption characteristics were studied and the effect exerted by the initial concentration of methyl orange, the time of cross-linking, and the amount of the adsorbent was determined. It is found that the product obtained at the Co0.5Ni0.5Fe2O4: chitosan ratio 1: 4 and the crosslinking time 5 h has the uniform morphology. At room temperature, the Co0.5Ni0.5Fe2O4–chitosan magnetic composite has maximal adsorption for methyl orange at the dosage 20 mg.  相似文献   

2.
The non-isothermal kinetics of dehydration of AlPO4·2H2O was studied in dynamic air atmosphere by TG–DTG–DTA at different heating rates. The result implies an important theoretical support for preparing AlPO4. The AlPO4·2H2O decomposes in two step reactions occurring in the range of 80–150 °C. The activation energy of the second dehydration reaction of AlPO4·2H2O as calculated by Kissinger method was found to be 69.68 kJ mol−1, while the Avrami exponent value was 1.49. The results confirmed the elimination of water of crystallization, which related with the crystal growth mechanism. The thermodynamic functions (ΔH*, ΔG* and ΔS*) of the dehydration reaction are calculated by the activated complex theory. These values in the dehydration step showed that it is directly related to the introduction of heat and is non-spontaneous process.  相似文献   

3.
The magnetic phase diagram of solid solutions in the CoCr2S4–Cu0.5Ga0.5Cr2S4 system was constructed. The widest concentration range (0.38 < x < 1) in the diagram represents solid solutions based on the ferrimagnetic semiconductor CoCr2S4 (TC = 223 K), which exhibits unusual properties in the magnetic ordering region while measuring the temperature dependence of the dynamic susceptibility. The magnetic properties were studied with a Quantum Design PPMS-9 platform within the temperature range 5–300 K in a 100-Oe constant magnetic field and/or a varying (100-, 500-, and 1000-Hz) magnetic field with an amplitude of 1 Oe.  相似文献   

4.
The Ba0.5Sr0.5Co0.8–xWxFe0.2O3–δ (х = 0–0.1) materials prepaMIECred by partial substitution of cobalt in BSCF with tungsten were studied. The tungsten solubility limit in the structure of cubic perovskite BSCF was shown to be ~2%. The doping with the highly charged W6+ (2%) cation improved the functional properties of BSCF: it increased the oxygen permeability and membrane stability in the CO2-containing atmosphere and suppressed the cubic–hexagonal perovskite polymorphic transition. This stabilizes high oxygen fluxes during long-term stability tests.  相似文献   

5.
Sol–gel processing of Cu-particle-dispersed (K0.5Na0.5)NbO3 (Cu/KNN) thin films was studied in an attempt to develop a method producing piezoelectric composite films with good mechanical performance. The Cu/KNN films were prepared via crystallization annealing at 650–750 °C for 1 min in air, followed by reduction annealing at 400–500 °C for 1–2 h in a 5% H2 and 95% Ar gas mixture. The resultant composite films consisted of perovskite KNN, metallic Cu, and Cu4O3. This suggests that the decomposition of Cu sources takes two different ways in this study. The Cu/KNN composite films containing Cu4O3 phases were produced by the crystallization annealing at 700 °C for 1 min followed by the reduction annealing at 500 °C for 1 h. Surface morphology observations reveal that these films have dense KNN matrix with a grain size of ~200 nm and uniformly dispersed Cu or Cu4O3 particles with a size of <500 nm.  相似文献   

6.
The mechanical behavior of Ge23Se67Sb10 glass can be improved by adding CsCl facilitating the nano-crystaline formation. Understanding the crystallization mechanism of chalcogenide glass can help in directing the subsequent annealing processing and tuning the microstructure and physical properties. In this work, 99.5Ge23Se67Sb10–0.5CsCl glass was prepared and its transformation kinetics was investigated under non-isothermal conditions with heating rate up to 400 K min?1. Using Vogel–Fulcher–Tammann equation, the ideal glass transition temperature was determined as T 0g = 434.1 K. Using the classical JMA theory, the average activation energy and average growth exponent were determined as 135.0 and 2.4 kJ mol?1, while using the model considering impingements (MCI), the two parameters were determined as 120.9 and 3.2 kJ mol?1, respectively. Compared to JMA theory, the MCI model can fit the transition curves better, and it shows that the growth mode of the present glass is between two-dimension and three-dimension. By comparing with the result of Ge23Se67Sb10 glass, it is found that addition of CsCl can reduce the growth dimension and activation energy during crystallization.  相似文献   

7.
Xiang Yao  Yi Hu  Zhi Su 《Chemical Papers》2017,71(12):2465-2471
A new composite, Li2MnO3·LiNi0.5Co0.45Fe0.05O2, can be synthesized by a solid-state method and preconditioned with 5 wt% HCl, H2SO4, or H3PO4 solution to achieve H+/Li+ exchange. The effects of acid treatment on the structure, morphology, and electrochemical properties of Li2MnO3·LiNi0.5Co0.45Fe0.05O2 cathode materials are analyzed. The X-ray powder diffraction patterns imply that the hexagonal α-NaFeO2 structure (space group R\(\bar{3}\)m) of the materials is not changed by the acid treatment. The scanning electron microscope images show that particles become spherical with smooth surfaces after acid treatment, and the Brunauer–Emmett–Teller analysis reveals that the specific surface area increases. The charge–discharge test demonstrates that acid-treated Li2MnO3·LiNi0.5Co0.45Fe0.05O2 cathode materials deliver higher initial coulombic efficiencies than untreated material, owing to the improvement of the catalytic reduction activity of oxygen released during the initial charge process. Furthermore, Li2MnO3·LiNi0.5Co0.45Fe0.05O2 treated with HCl displays the best electrochemical performance, with the acid treatment improving the initial coulombic efficiency from 66.0 to 82.2%. Thus, acid treatment can effectively improve the electrochemical performance of electrode materials in Li-ion batteries.  相似文献   

8.
The spinel-type ferrites NiFe2O4 and Zn0.5Ni0.5Fe2O4 modified by lanthanide ions Eu3+ and Tb3+ were prepared by a sol—gel process with propylene oxide as a gelating agent. The phase homogeneity of the samples was tested by XRD and Mössbauer spectroscopy. Transmission electronic microscopy used for characterisation of the morphology of the samples revealed nanosized powdered samples with a narrow distribution of particle sizes. It was noted that the presence of Ln3+ ions influenced the magnetic properties of nanosized NiFe2O4 and Ni0.5Zn0.5Fe2O4 ferrites. The dependence of the magnetic properties of the samples on the rare-earth doping may be explained by the different grain sizes. The saturation magnetisation tends to decrease with increasing rare-earth doping and decreasing crystallite size. A similar trend was observed for the coercive field, with the exception of the Tb3+-doped Zn0.5Ni0.5Fe2O4 where it remained the same as in the pure ferrite.  相似文献   

9.
The effect of the radius of the alkali-earth cation substituted into the A sublattice of La0.5A0.5Mn0.5Ti0.5O3–δ (А = Са, Sr, Ba) perovskites on their stability and transport and thermomechanical properties is considered. The increase in the cation radius is shown to improve the phase stability and decrease the conductivity under both oxidative and reductive conditions. The thermal and chemical expansion of La0.5A0.5Mn0.5Ti0.5O3–δ ceramics is studied by dilatometry in controlled atmospheres and a wide temperature range at p(O2)=10–21–0.21 atm. The coefficients of thermal expansion of La0.5A0.5Mn0.5Ti0.5O3–δ are in the interval of (10.7–14.3)× 10–6 K–1, i.e., compatible with those of standard solid electrolytes of solid-oxide fuel cells. The maximum chemical expansion does not exceed 0.2% at isothermal reduction in the CO?CO2 mixture.  相似文献   

10.
The complex Na3(NH4)2[Ir(SO3)2Cl4]·4H2O was examined with single crystal X-ray diffraction and IR spectroscopy. Crystal data: a = 7.3144(4) Å, b = 10.0698(5) Å, c = 12.3748(6) Å, β = 106.203(1)°, V = 875.26(8) Å3, space group P21/c, Z = 2, d calc = 2.547 g/cm3. In the complex anion two trans SO 3 2? groups are coordinated to iridium through the S atom. The splitting of O-H bending vibrations of crystallization water molecules and N-H ones of the ammonium cation is considered in the context of different types of interactions with the closest neighbors in the structure.  相似文献   

11.
Single crystals of Ba3[UO2(C2O4)2(NCS)]2 · 9H2O are synthesized and studied by X-ray diffraction. The crystals are orthorhombic, space group Fddd, Z = 16, and the unit cell parameters are a = 16.253(3) Å, b = 22.245(3) Å, c = 39.031(6) Å. The main crystal structural units are mononuclear complex groups [UO2(C2O4)2NCS]3? of the crystal-chemical family (AB 2 01 M1 (A = UO 2 2+ , B01 = C2O 4 2? , M1 = NCS?) of the uranyl complexes linked into a three-dimensional framework by electrostatic interactions and hydrogen bonds involving oxalate ions and water molecules.  相似文献   

12.
Comparative study of capacitative properties of RuO2/0.5 M H2SO4 and Ru/0.5 M H2SO4 interfaces has been performed with a view to find out the nature of electrochemical processes involved in the charge storage mechanism of ruthenium (IV) oxide. The methods of cyclic voltammetry and scanning electron microscopy (SEM) were employed for the investigation of electrochemical behavior and surface morphology of RuO2 electrodes. It has been suggested that supercapacitor behavior of RuO2 phase in the potential E range between 0.4 and 1.4 V vs reference hydrogen electrode (RHE) should be attributed to double-layer-type capacitance, related to non-faradaic highly reversible process of ionic pair formation and annihilation at RuO2/electrolyte interface as described by following summary equation:
where and represent holes and electrons in valence and conduction bands, respectively. The pseudocapacitance of interface under investigation is related to partial reduction of RuO2 layer at E < 0.2 V and its subsequent recovery during the anodic process.  相似文献   

13.
(K0.5 Na0.5)NbO3 (KNN) perovskite materials have been developed as a promising lead-free piezoelectric material for environmentally benign piezoelectric devices. KNN films with about 320 nm thickness were fabricated on Pt(111)/SiO2/Si(100) substrates by a sol–gel method from stoichiometric and A-site ion excess precursor solutions. Two different annealing methods were also used to investigate the crystallographic evolution of the films. A layer-by-layer annealing process results in highly (001) oriented KNN from the annealing temperature of 550 °C, while the final annealing method leads to weaker crystalline peaks with a random orientation. The KNN films from the K and Na excess precursor solutions show similar crystallization behavior. However, the ferroelectric hysteresis loops of the films were greatly improved by compensating for an A-site vacancy. In particular, the KNN films from K-excess precursor solutions show better ferroelectric properties compared to the films prepared from Na excess solutions.  相似文献   

14.
The structure of tri-μ2-disulfido-μ3-thiotris(diethyldithiocarbamato)-S,S′-triangle-trimolybdenum iodide [Mo33-S)(μ2-S2)3(Et2NCS2)3]I was determined. The compound was characterized by differential thermal analysis and IR, Raman, and X-ray electronic spectroscopy.  相似文献   

15.
A solvatothermal reaction of the octahedral cluster molybdenum complex (H3O)2[Mo63-Cl)8Cl6] · 6H2O with CaCl2 · 6H2O and OPPh3 in acetonitrile gave the known polymeric complex trans-[{Ca(OPPh3)4}{Mo63-Cl)8Cl6}]. However, a closer examination revealed that this system also produces a novel cluster complex, [Ca(OPPh3)5][Mo63-Cl)8Cl6] · OPPh3, which was isolated and characterized by X-ray diffraction.  相似文献   

16.
A new compound containing the tetraphenylphosphonium cation and the nickel(III) bisdicarbollyl anion, [(C6H5)4P][Ni(B9C2H11)2]·CCl4, was synthesized and investigated by XRD at room temperature (295 K). Crystal data: C29H42B18PCl4Ni, M = 816.69, monoclinic, space group P2/c; unit cell parameters a = 13.5873(6) Å, b = 7.1475(2) Å, c = 20.7829(8) Å, β = 94.4595(13)°, V = 2012.2(2) Å3, Z = 2, d calc = 1.348 g/cm3. The structure was solved by direct and Fourier methods and refined by the full-matrix least squares method in an anisotropic (isotropic for H) approximation to the final R 1 = 0.0466 for 3055 I hkl ≥ 2σ I of 23,655 reflections collected and 5618 independent I hkl (Bruker X8 APEX diffractometer, λMoK α).  相似文献   

17.
A new dichromium(III) cobalt(II) diphosphate(V) of the formula CoCr2(P2O7)2 was detected in the Co3Cr4(PO4)6–Cr(PO3)3 system. The new compound was obtained as a result of high-temperature solid-state reactions between CoCO3, Cr2O3 and (NH4)2HPO4 as well as between Cr(PO3)3 and Co3Cr4(PO4)6. CoCr2(P2O7)2 was characterized using XRD, DTA and IR methods. Results demonstrated that CoCr2(P2O7)2 crystallizes in the triclinic system and its unit cell parameters were calculated. Its infrared spectrum was presented. CoCr2(P2O7)2 melts incongruently at 1270±10 °C with a formation of solid α-CrPO4. The compound Co3Cr4(PO4)6, component of the system under study, was obtained for the first time as a pure phase. Its thermal stability was also investigated. Co3Cr4(PO4)6 is stable in air up to 1410 ± 20 °C.  相似文献   

18.
Single crystals of Cs[(UO2)2(C2O4)2(OH)] · H2O were synthesized and structurally studied using X-ray diffraction. The compound crystallizes in monoclinic space group P21/m, Z = 2, with the unit cell parameters a = 5.5032(4) Å, b = 13.5577(8) Å, c = 9.5859(8) Å, β = 97.012(3)°, V = 709.86(9) Å3, R = 0.0444. The main building units of crystals are [(UO2)2(C2O4)2(OH)]? layers of the A2K 2 02 M2 (A = UO 2 2+ , K02 = C2O 4 2? , and M2 = OH?) crystal-chemical family. Uranium-containing layers are linked into a three-dimensional framework via electrostatic interactions with outer-sphere cations and hydrogen bonds with water molecules.  相似文献   

19.
CuCrO2 and CuAl0.5Cr0.5O2 thin films were prepared by sol–gel processing and subsequent two-step annealing in air and inert gas atmosphere. Phase pure films with delafossite structure were obtained by adjusting the respective temperatures. The related phase development strongly affects the optical and electrical performance, giving leeway for optimization. The resulting CuCrO2 (16 Ωcm, transmittance 21%) and CuAl0.5Cr0.5O2 (11 Ωcm, transmittance 49%) films showed p-type conductivity by their positive Seebeck coefficients. The microstructure of the systems was characterized by scanning and transmission electron microscopy and correlated to the growth of different crystalline phases during the annealing steps. Thereby, crystal thermodynamics also affects the respective film performance, alleviating delafossite formation from the amorphous phase.  相似文献   

20.
Single crystals of the Na4[Na2Cr2(C2O4)6] · 10H2O complex were synthesized for the first time. The structure of the complex was determined by X-ray diffraction analysis. The compound crystallizes in the monoclinic crystal system with the unit cell parameters a = 17.290(4) Å, b = 12.521(3) Å, c = 15.149(3) Å, β = 100.45(3)°, Z = 4, space group Cc. Anionic layers [NaCr(C2O4)3] 2n 4n? can be distinguished in the crystal structure of the complex. The Na+ cations and water molecules, involved in the formation of a hydrogen bond network, are located between the anionic layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号