首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silica nanoparticles with controlled size and morphology and a high degree of monodispersity have been synthesized using single and double microemulsion systems employing a cationic surfactant (CTAB) and a non-ionic surfactant (Tergitol). Depending on the type of surfactant aggregate acting as templates, very different morphologies were formed. Nanospindles of silica of ~200–300 nm in length and nanofibres could be obtained by suitably controlling the reverse micellar methodology. The hydrothermal method resulted in highly porous and uniform spheres of diameter ~300 nm which appears to be formed from aggregates of small silica nanoparticles of size ~10 nm. The surface area of the nanoparticles (119 m2/g) was found to be much higher than the corresponding bulk SiO2 (500–600 nm) which had a surface area of 22 m2/g. The hydrothermally obtained spheres of size ~300 nm show a surface area of 35 m2/g. In honor of Prof. C.N.R. Rao, FRS, on his 75th birth anniversary.  相似文献   

2.
Carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like cation exchanger with diameter in the range of 20–40 nm, length in the range of 100–150 μm and particle size in the range of 21–38 nm have been successfully prepared by surfactant assisted sol–gel method. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, fourier transform infra red spectroscopy and thermogravimetric analysis-differential thermal analysis studies were carried out to study the structure and morphology of this composite nano-rod like cation exchanger. Freundlich adsorption isotherm is well fitted for the adsorption of pyridine on the surface of this composite nano-rod like cation exchanger. The thermodynamic parameters such as Freundlich constant, thermodynamic equilibrium constant (K 0), standard free energy changes (ΔG 0), standard enthalpy changes (ΔH 0) and standard entropy changes (ΔS 0) have been evaluated. These parameters indicated that the adsorption of pyridine on the surface of composite nano-rod like cation exchanger was feasible, spontaneous and exothermic in nature which suggests for the potential application of pyridine removal from water.  相似文献   

3.
Mesoporous aluminosilicate spheres of 0.3–0.4 Μm diameter, with different Si/Al ratios, have been prepared by surfactant templating. Surface area of these materials is in the 510–970 m2 g-1 range and pore diameter in the 15–20 ? range.  相似文献   

4.
Sound velocity and density measurements of aqueous solutions of the anionic surfactant SDS (sodium dodecyl sulfate) and the cationic surfactant CTAB (cetyltrimethylammonium bromide) with the drug furosemide (0.002 and 0.02 mol⋅dm−3) have been carried out in the temperature range 20–40 °C. From these measurements, the compressibility coefficient (β), apparent molar volume (φ v ) and apparent molar compressibility (φ κ ) have been computed. From electrical conductivity measurements, the critical micelle concentrations (CMCs) of SDS and CTAB has been determined in the above aqueous furosemide solutions. From the CMC values as a function of temperature, various thermodynamic parameters have been evaluated: the standard enthalpy change (DHmo\Delta H_{\mathrm{m}}^{\mathrm{o}}), standard entropy change (DSmo\Delta S_{\mathrm{m}}^{\mathrm{o}}), and standard Gibbs energy change (DGmo\Delta G_{\mathrm{m}}^{\mathrm{o}}) for micellization. This work also included viscosity studies of aqueous solutions of SDS and CTAB with the drug in order to determine the relative viscosity (η r). UV-Vis studies have also been carried for the ternary drug/surfactant/water system having SDS in the concentration range 0.002–0.014 mol⋅dm−3. All of these parameters are discussed in terms of drug–drug, drug–solvent and drug–surfactant interactions resulting from of various electrostatic and hydrophobic interactions.  相似文献   

5.
We demonstrate the synthesis of copper selenide quantum dots (QDs) by element directed, inexpensive, straight forward wet chemical method which is free from any surfactant or template. Copper selenide QDs have been synthesized by elemental copper and selenium in the presence of ethylene glycol, hydrazine hydrate, and a defined amount of water at 70 °C within 8 h. The product is in strong quantum confinement regime, phase analysis, purity and morphology of the product has been well studied by X-ray diffraction (XRD), UV–Visible spectroscopy (UV–Vis), Photo-luminescent spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), High resolution transmission electron microscopy (HRTEM), and by Atomic force microscopy (AFM) techniques. The absorption and photoluminescence studies display large “blue shift”. TEM and HRTEM analyses revealed that the QDs diameters are in the range 2–5 nm. Due to the quantum confinement effect copper selenide QDs could be potential building blocks to construct functional devices and solar cell. The possible mechanism is also discussed.  相似文献   

6.
A dimeric (gemini) surfactant containing cleavable ester groups has been synthesized and studied. The new surfactant has a low critical micelle concentration (2.7∙10–5 mol/L) and Krafft temperature (≤0°C). Alkaline hydrolysis of 4-nitrophenyl diethyl phosphonate and 4-nitrophenyl diethyl phosphate in the presence of micelles of gemini surfactant I proceeds 30-144 times more rapidly than in water. Chemical cleavage of gemini surfactant I in an alkaline medium is achieved in 96 h.  相似文献   

7.
Upon emulsification of a mixture of methyl methacrylate or methacrylic acid monomer, along with divinylbenzene crosslinker and octane porogen into a glycerol suspension medium, brightly colored emulsions form. The bright colors of the emulsion originate from an exact matching of the refractive index of the emulsion droplets with that of the glycerol medium only at certain wavelengths of light – other wavelengths of light scatter. Polymerization of the brightly colored emulsions yields three different latex morphologies depending upon the polymerization temperature and the type of emulsifier, monomer, initiator, or hydrocarbon applied. The latex morphologies obtained range from large porous latex (1–10 μm in size) to medium-sized porous latex (0.1–1 μm in size) to small latex (up to 0.1 μm in size). Electronic Publication  相似文献   

8.
Compositions based on oxides and containing 5–20% w/w of ammonium molybdophosphate have been synthesized by means of different routes. Prepared samples have been studied using nitrogen adsorption–desorption, XRD, DTA–TG, and FTIR spectroscopy. Keggin structure is retained at incorporation of ammonium molybdophosphate into siliceous framework or its deposition on oxide surface and duration following calcinations up to 500 °C. Compositions possess porous structure from micromesoporous to mesomacroporous depending on the preparation method.  相似文献   

9.
Under typical dilute reactant compositions (3 ~ 5 wt% of surfactant template concentration) and conventional hydrothermal conditions for mesoporous materials synthesis, successful preparation of hierarchically macro/mesoporous silica monoliths was reported in this paper. The resultant materials were characterized by a series of techniques including powder X-ray diffraction, N2 adsorption–desorption, SEM, TEM/EDS, and Hg porosimetry. A new kind of stable and hierarchically porous pure silica monoliths was confirmed, which are featured with highly ordered mesoporous structures, rod-shaped unit particles, large specific surface area of 492 m2/g, continuous macropores of about 4.0 μm in size and high macropore volume of about 13.1 cm3/g. Moreover, using the resultant silica monoliths as hard templates, carbon monoliths have been successfully replicated, which inherit the structural characters of parent silica materials. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Cresol Red (CR) pH indicator was encapsulated into silica network using the sol–gel process. Transparent monolithic disks of entrapped CR were obtained in the presence of cetyl trimethyl ammonium bromide (CTAB) or dodecyl dimethyl amino oxide (Genaminox LA,GLA) alkyl hydroxyethyl dimethyl ammonium chloride (HY, R = 12–14) and TX-100 surfactants. UV/VIS spectra showed that the encapsulated CR retains its structure in terms of its response to pH. At the neutral conditions it is found that the HY surfactant is considered as proton donor as favor the cationic form of the indicator, while CTAB surfactant favor the neutral, however GLA surfactant, the anionic form of CR is more favored because GLA has a zwitterionic head. The surfactant GLA with TEOS has shifted the equilibrium to the ionized form of CR due to the electrostatic interaction between the surfactant and the CR anion. Therefore their pH range is dependent on the nature of a surfactant used. It is found that the HY surfactant is more efficient as far as loading of CR is concern and it widened the working pH range.  相似文献   

11.
Highly ordered SBA-15 nanoporous silica containing ethylene, phenylene bridges or/and amine, thiol, vinyl and phenyl surface groups were synthesized by using amphiphilic block copolymer as the structure-directing agent. The XRD data shows high degree of the order of the final structures. Obtained materials have well-developed porous structure—values of specific surface area are in the range 700–1050 m2/g and the sizes of cylindrical mesopores are in the range 6.5–9.5 nm. It was determined that size of the mesopores strongly depends even on small amounts of co-monomers co-condensing with TEOS. A new technique to introduce some amount of pendant amine groups by co-condensation of proper monomers has been proposed. Tetragonal structure was obtained when small amount of vinyl groups was introduced to the system. A new approach of determining pore size based only on the XRD measurements was compared with KJS method, confirming full usefulness of the former for calculation of the size of mesopores in SBA-15 materials. Dedicated to Professor Mietek Jaroniec on the occasion of his 60th birthday.  相似文献   

12.
A mixed anionic–cationic surfactant cloud point extraction (CPE) has been developed using sodium dodecyl sulfate (SDS) and tetrabutylammonium bromide (TBABr) for the extraction and preconcentration of organophosphorus pesticides (OPPs) at ambient temperature before analysis by high-performance liquid chromatography. The studied OPPs were azinphos-methyl, parathion-methyl, fenitrothion, diazinon, chlorpyrifos, and prothiophos. The optimum conditions of the mixed anionic–cationic CPE were 50 mmol L−1 SDS, 100 mmol L−1 TBABr, and 10% (w/v) NaCl. The extracted OPPs were successfully separated within 11 min using the conditions of a Waters Symmetry C8 column, a flow rate of 0.8 mL min−1, a gradient elution of methanol and water, and detection at 210 nm. Linearity was found over the range 0.05–5 μg mL−1, with the correlation coefficients higher than 0.996. The enrichment factor of the target analytes was in the range 6–11, which corresponds to their limits of detection from 1 to 30 ng mL−1. High precisions (intra-day and inter-day) were obtained with relative standard deviation <1.5% (t R) and 10% (peak area). Accuracies (% recovery) of the different spiked OPP concentrations were 82.7–109.1% (water samples) and 80.3–113.3% (fruit juice samples). No contamination by the OPPs was observed in any studied samples.  相似文献   

13.
We have studied structural and optical properties of thin films of TiO2, doped with 5% ZnO and deposited on glass substrate (by the sol–gel method). Dip-coated thin films have been examined at different annealing temperatures (350–450 °C) and for various layer thicknesses (89–289 nm). Refractive index, porosity and energy band gap were calculated from the measured transmittance spectrum. The values of the index of refraction are in the range of 1.97–2.44, the porosity is in the range of 0.07–0.46 and the energy band gap is in the range of 3.32–3.43. The coefficient of transmission varies from 50 to 90%. In the case of the powder of TiO2, doped with 5% ZnO, and aged for 3 months in ambient temperature, we have noticed the formation of the anatase phase (tetragonal structure with 20.23 nm grains). However, the undoped TiO2 exhibits an amorphous phase. After heat treatments of thin films, titanium oxide starts to crystallize at the annealing temperature 350 °C. The obtained structures are anatase and brookite. The calculated grain size, depending on the annealing temperature and the layer thickness, is in the range of 8.61–29.48 nm.  相似文献   

14.
Scaffolds containing dual porosity at the nano and macroscale appear to exhibit improved performance in terms of crystallization of hydroxycarbonate apatite plus cell adhesion and proliferation, as well as vascularization. The aim of the present work is to develop a novel, simple sol–gel process for the preparation of silica-based bioactive porous bone tissue scaffold, with a pore structure consisting of interconnected pores of both 100’s of micrometers and 10’s of nanometers in size, optimized for enhanced bone regeneration performance. SiO2–CaO and SiO2–CaO–P2O5 porous glass monoliths have been prepared with a dual pore structure including pores of both ~50–200 micrometers and a few to 10’s of nanometers in size, based on polymerization-induced phase separation together with the sol-gel transition, by adding a water soluble polymer to the precursor sol. The nanopore (~5–40 nm) structure of such macroporous gel skeletons was tailored by solvent exchange, followed by heat treatment at 600–700 °C. The overall pore structure has been studied by Scanning Electron Microscopy (SEM), N2-adsorption (BET), Mercury intrusion porosimetry and Infrared spectroscopy. The scaffold bioactivity, tested in simulated body fluid, has been demonstrated by means of DRIFTS, SEM and X-ray diffraction measurements.  相似文献   

15.
The pyrolysis of wheat straw has been carried out by means of thermogravimetric analysis in inert atmosphere. The samples were heated over a range of temperatures that includes the entire range of pyrolysis with three different heating rates of 5, 10 and 20 K min−1. The activation energy values as a function of the extent of conversion for the pyrolysis process of wheat straw have been calculated by means of the Flynn–Wall–Ozawa isoconversional method, the Vyazovkin–Sbirrazzuoli isoconversional method and an iterative isoconversional method presented in this article. The results have showed that there are small differences between the activation energy values obtained from the three methods, and the pyrolysis process reveals a dependence of the activation energy on conversion and have indicated the validity of the iterative integral isoconversional method. The effective activation energy for the pyrolysis of wheat straw is 130–175 kJ mol−1 in the conversion range of 0.15–0.85. Furthermore, the prediction of the pyrolysis process under isothermal conditions from the dependence of the activation energy on the extent of conversion has been presented.  相似文献   

16.
In this study, the nanoporous zirconium titanate was prepared using sol–gel process and coated over 316L SS implants via dip-coating technique. XRD patterns of zirconium titanate are crystalline and orthorhombic in structure. FT-IR spectra showed a broad band between 3,500 and 3,300 cm−1, which was assigned to fundamental stretching vibrations of hydroxyl groups. The set of overlapping peaks in the range of 810–520 cm−1 are related to Zr–O and Zr–O–Ti groups. SEM-EDAX and TEM showed the surface morphology of coated zirconium titanate to be porous and uniform. Excellent adhesion of the coating to the substrate has been achieved. The contact angle value was found to be 12°. The coating acts as a barrier layer to the metallic implants and induces the formation of hydroxyapatite layer on the metal surfaces. These results revealed that the nano zirconium titanate coated 316L SS exhibit higher bioactivity compared to that of uncoated 316L SS.  相似文献   

17.
Anionic surfactant and silane modified layered double hydroxides (LDHs) were synthesized through an in situ coprecipitation method. The structure and morphology were characterized by XRD and TEM techniques, and their thermal decomposition processes were investigated using infrared emission spectroscopy (IES) combined with thermogravimetry (TG). The surfactant modified LDHs (H-DS) shows three diffractions located at 1–7° (2θ), while there is only one broad reflection for silane grafted LDHs (H–Si) in this region. The morphologies of the H-DS and H–Si show fibrous exfoliated layers and curved sheets, respectively. The IES spectra and TG curves indicate that alkyl chain combustion and dehydroxylation are overlapped with each other during heating from 373 to 723 K in H-DS and to 873 K in H–Si. Sulfate anion transformation process occurs at 473 K in H-DS and 523 K in H–Si. The derivant of sulfate can exist even above 1073 K. After further decomposition, the metal oxides and the new type of Si–O compounds are formed beginning at around 923 K in silane modified sample.  相似文献   

18.

Abstract  

A stereoselective HPLC method has been developed for the simultaneous determination of oxprenolol enantiomers in urine and pharmaceutical products. Enantiomeric resolution of oxprenolol was achieved on cellulose tris(3,5-dichlorophenylcarbamate) immobilized onto a 5 μm spherical porous silica chiral stationary phase (CSP) known as Chiralpak IC with UV detection at 273 nm. The mobile phase consisted of n-hexane:isopropanol:triethylamine 70:30:0.1 (v/v/v) at a flow rate of 1.0 cm3/min. The method was validated for its linearity, accuracy, precision, and robustness. The calibration curves were linear over the range of 0.5–75 μg/cm3, with a detection limit of 0.1 μg/cm3 for each enantiomer. An average recovery of 99.0% and a mean relative standard deviation of 2.6% at 40.0 μg/cm3 for S-(−)- and R-(+)-enantiomers were obtained. The overall recoveries of oxprenolol enantiomers from pharmaceutical formulations were in the range 97.5–99.0%, with RSDs ranging from 0.6 to 0.8%. The mean extraction efficiency of oxprenolol from urine was in the range of 86.0–93.0% at 0.5–5 μg/cm3 for each enantiomer. The assay method proved to be suitable as a chiral quality control for oxprenolol formulations using HPLC and for therapeutic drug monitoring.  相似文献   

19.
Dimeric (gemini) surfactants containing hydroxyl functional groups have been synthesized and studied. These new surfactants have low critical micelle formation concentrations (<5·10−5 mol/L) and Krafft temperatures (≤0 °C). Depending on the pH of the medium, the alkaline hydrolysis of 4-nitrophenyl diethyl phosphonate, which is a model of organophosphorus ecotoxicants, proceeds 20–80 times more rapidly in the presence of gemini surfactant micelles than in water.  相似文献   

20.
Summary. A new type of silica precursor was synthesized by (trans)alkoxylation of alkoxy- and chlorosilanes with ethyl (L)-lactate. This novel ethyl lactate modified silane was hydrolyzed and condensed in the presence of a non-ionic surfactant – poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer (P123) – to give monolithic silica gels. The wet gels were dried using two different drying techniques resulting in crack-free monoliths: a) supercritical drying with CO2 to yield a porous inorganic material and b) surface silylation with trimethylchlorosilane to yield an inorganic–organic nanocomposite material. The obtained porous gels were characterized by different techniques including thermal analysis, nitrogen sorption, and electron microscopy (TEM, SEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号