首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile preparative route to alkanethiolate (Cn) Au38 nanoparticles, where n = 4, 6, 8, 10, and 12, is described. Subnanometer-sized nanoparticles are initially produced by a modified Brust synthesis, which undergo core-size evolution upon removal of reaction impurities that have served as additional protecting layers. C4-C12 Au38 nanoparticles are prepared in approximately 300 mg quantities by the selective removal of reaction impurities with dimethyl sulfoxide. The prepared nanoparticles are 1.1-1.2 nm in core size, and all exhibit optical and electrochemical characteristics of Au38 nanoparticles. Voltammetry of these Au38 nanoparticles reveals that the energy gap between the first one-electron oxidation and the first reduction is rather insensitive to the ligand employed. By contrast, the energy gaps between the first and second oxidations and between the second and third oxidations are ligand-dependent; both substantially increase with ligand thickness. The charging energetics of alkanethiolate-coated Au38 nanoparticles can thus be described as a sum of electron addition energies and the discrete electronic energy levels of the Au38 core.  相似文献   

2.
This work concerns the study of Al–Ni bimetallic nanoparticles synthesized by gamma-radiolysis of aqueous solution containing aluminium chloride hexahydrate, nickel chloride hexahydrate, polyvinyl alcohol for capping colloidal nanoparticles, and isopropanol as radical scavenger. While the Al/Ni molar ratio is kept constant, size of the nanoparticles can be well controlled by varying the radiation dose. The products were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD). Observations of UV–vis absorption spectra and TEM images showed that as the radiation dose increases from 50 to 100 kGy the particle size decreases and the number particles distribution increases. It may be explained due to the competition between nucleation and aggregation processes in the formation of metallic nanoparticles under irradiation. The EDX and XRD analysis confirmed directly the formation of Al–Ni bimetallic nanoparticles in form of alloy nanoparticles.  相似文献   

3.
基于温敏水凝胶的可调胶体晶体制备   总被引:1,自引:1,他引:0  
基于单分散胶体粒子悬浊液在温敏水凝胶表面可以形成湿润型胶体晶体的现象, 利用温敏水凝胶对水的控释作用制备了温度敏感的可调制胶体晶体. 在室温下利用提拉法在温敏水凝胶聚N-异丙基丙烯酰胺(PNIPAAm)表面制备湿润型胶体晶体膜. 由于胶体粒子的有序排列, 胶体晶体显示出一个尖锐的反射峰. 当温度上升到34 ℃以上时, 由于PNIPAAm水凝胶中的水被释放, 导致胶体晶体中粒子浓度降低, 粒子间距增加; 反射峰发生红移. 这些特性可以通过温度变化进行调制.  相似文献   

4.
A highly sensitive “turn‐on” fluorescent sensor based on the size exclusion of the polyacrylamide gel was developed for the on‐gels detection of human serum proteins after PAGE. The possible mechanism of this fluorescence sensor was illustrated and validated by utilizing five kinds of colloidal silver nanoparticles with different particle size distribution and six kinds of polyacrylamide gels with different pore size. It was attributed to that silver nanoparticles (<5 nm in diameter) had been selectively absorbed into the gel and formed the small silver nanoclusters, resulting in the red fluorescence. Using this new technique for the detection of human serum proteins after PAGE, a satisfactory sensitivity was achieved and some relatively low‐abundance proteins (e.g. zinc‐alpha‐2‐glycoprotein), which are the significant proteinic markers of certain diseases can be easily detected, but not with traditional methods. Furthermore, it was also successfully applied to distinguish between serums from hepatoma patient and healthy people. As a new protein detection technique, the colloidal silver nanoparticles based “turn‐on” fluorescent sensor offers a rapid, economic, low background, and sensitive way for direct detection of human serum proteins, showing available potential and significance in the development of nanobiotechnology and proteome research.  相似文献   

5.
We have demonstrated that polystyrene latex coated with titania nanosheets can be fabricated into a close-packed colloidal crystalline array, and that these coated colloidal spheres can be used to control the peak position of optical stop bands through the coating. The titania-nanosheets-coated polystyrene latex was prepared by the layer-by-layer (LBL) assembly coating process, involving alternating lamination of cationic polyelectrolytes and anionic titania nanosheets on monodisperse polystyrene latex particles. The Bragg diffraction peak of the colloidal crystalline array shifted to longer wavelengths with the coating of titania nanosheets. This red shift was caused by an increase in refractive index upon coating, as revealed by angle-resolved reflection spectra measurements. The current work suggests new possibilities for the creation of advanced colloidal crystals having tunable optical properties from tailored colloidal spheres.  相似文献   

6.
A new fiber-optic pH sensor is demonstrated by coating negatively charged polyelectrolyte complex (PEC) nanoparticles, made of sodium carboxymethyl cellulose and poly(diallyldimethylammonium chloride) (PDDA), and positively charged PDDA on the surface of a thin-core fiber modal interferometer (TCFMI) with a layer-by-layer (LbL) electrostatic self-assembly method. The fabricated TCFMI pH sensor has different transmission dip wavelengths under different pH values and shows high sensitivities of 0.6 nm/pH unit and −0.85 nm/pH unit for acidic and alkaline solutions, respectively, and short response time of 30–50 s. The LbL electrostatic self-assembly process of a PEC/PDDA multilayer is traced by quartz crystal microbalance and shows a fast thickness growth. Atomic force microscopy shows the root mean square (RMS) surface roughness of electrostatic self-assembly nanocoating of polyelectrolyte complex/polyelectrolyte is much higher than that of polyelectrolyte/polyelectrolyte due to the larger size of PEC colloidal nanoparticles. The enhanced RMS surface roughness and thickness of the nanocoating can shorten the response time and raise the sensitivity of the TCFMI pH sensor, respectively. In addition, the TCFMI pH sensor has highly reversible performance and good durability.  相似文献   

7.
 Colloidal drug carriers offer a number of potential advantages as delivery systems for, for example, poorly soluble compounds. The first generation of colloidal carriers, in particular liposomes and sub-micron-sized lipid emulsions, are, however, associated with several drawbacks which so far have prevented the extensive use of these carriers in drug delivery. As an alternative colloidal delivery system melt-emulsified nanoparticles based on solid lipids have been proposed. Careful physicochemical characterization has demonstrated that these lipid-based nanosuspensions (solid lipid nanoparticles) are not just “emulsions with solidified droplets”. During the development process of these systems interesting phenomena have been observed, such as gel formation on solidification and upon storage, unexpected dynamics of polymorphic transitions, extensive annealing of nanocrystals over significant periods of time, stepwise melting of particle fractions in the lower-nanometer-size range, drug expulsion from the carrier particles on crystallization and upon storage, and extensive supercooling. These phenomena can be related to the crystalline nature of the carrier matrix in combination with its colloidal state. Observation of the supercooling effect has led to the development of a second new type of carrier system: nanospheres of supercooled melts. This novel type of colloidal lipidic carrier represents an intermediate state between emulsions and suspensions. Moreover, these dispersions are particularly suited to the study of the basic differences between colloidal triglyceride emulsions and suspensions. For many decades drug carriers have represented the only group of colloidal drug administration systems. Nowadays a fundamentally different group of dispersions is also under investigation: drug nanodispersions. They overcome a number of carrier-related drawbacks, such as limitations in drug load as well as side effects due to the matrix material of the carrier particles. Utilizing this concept virtually insoluble drugs can be formulated as colloidal particles, of solid or supercooled nature. For example, coenzyme Q10 (Q10) has been successfully processed into a dispersion of a supercooled melt. Droplet sizes in the lower nanometer range and shelf lives of more than 3 years can easily be achieved for Q10 dispersions. The drug load of the emulsion particles reaches nearly 100%. Received: 15 July 1999/Accepted: 11 November 1999  相似文献   

8.
Titania coated monodisperse silica spheres have been synthesized and fabricated as a close-packed colloidal crystalline array. We have demonstrated that the coated colloidal sphere can be used to control the peak position of the optical stop band through variation of the coating thickness. The titania coated silica spheres were prepared by the layer-by-layer assembly coating process, which reciprocally laminates the cationic polyelectrolyte and the anionic titania nanosheets on a monodisperse silica spheres, and were sintered to change the titania nanosheets to anatase. The Bragg diffraction peak of the colloidal crystalline array shifted to the long wavelength region with an increase of thickness of the titania layer. Angle-resolved reflection spectra measurements clarified that the red shift was caused by increasing of the refractive index with increase of the thickness of the layer. The current work suggests new possibilities for the creation of advanced colloidal crystalline arrays with tunable optical properties from tailored colloidal spheres.  相似文献   

9.
Au nanoparticles attract keen research efforts due to their unique optical electronic properties1,2. The preparation of nanoparticles has important significance in nanochemistry, material science, physics and life science3. The technique of microwave has been paid attention by the researchers of chemistry, physics, and materials4-6. But the liquid preparation of Au nanoparticles with both microwave high-pressure and reducing agent of alcohol has not been reported to date. As the HAuCl_4-CH_…  相似文献   

10.
The installation of large scale colloidal nanoparticle thin films is of great interest in sensor technology or data storage. Often, such devices are operated at elevated temperatures. In the present study, we investigate the effect of heat treatment on the structure of colloidal thin films of polystyrene (PS) nanoparticles in situ by using the combination of grazing incidence small-angle X-ray scattering (GISAXS) and optical ellipsometry. In addition, the samples are investigated with optical microscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FESEM). To install large scale coatings on silicon wafers, spin-coating of colloidal pure PS nanoparticles and carboxylated PS nanoparticles is used. Our results indicate that thermal annealing in the vicinity of the glass transition temperature T(g) of pure PS leads to a rapid loss in the ordering of the nanoparticles in spin-coated films. For carboxylated particles, this loss of order is shifted to a higher temperature, which can be useful for applications at elevated temperatures. Our model assumes a softening of the boundaries between the individual colloidal spheres, leading to strong changes in the nanostructure morphology. While the nanostructure changes drastically, the macroscopic morphology remains unaffected by annealing near T(g).  相似文献   

11.
The main purpose of this study is to investigate the colloidal stability of hydroxyapatite (HAp) nanoparticles prepared by different methods. Nano-sized hydroxyapatite particles are synthesized by two different methods including hydrothermal and solvo-treatment processes. In hydrothermal process nanoparticles are synthesized at high temperature, while in solvo-treatment method nanoparticles are synthesized at room temperature by the use of surfactants and organic solvent. The samples are characterized by powder X-ray diffraction (XRD), fourier-transformed infrared spectroscopy (FT-IR), scanning electron microscopy coupled with energy dispersive X-ray analysis detector (SEM + EDXA), and phase separation analyzer. The produced nanoparticles are different in size, stoichiometric ratio, morphology, crystallinity and colloidal stability in a dilute dental adhesive. The results show that the nanoparticles synthesized by these two methods are quite dissimilar and particles prepared by hydrothermal method have a smaller size and higher colloidal stability.  相似文献   

12.
Amphiphilic colloids of CdS and noble metal nanoparticles, which can be dispersed both in water and organic solvents such as ethanol, N,N-dimethylformamide, chloroform, and toluene, are studied. The amphiphilic colloidal nanoparticles are synthesized by grafting the amphiphilic and thermoresponsive polymer of thiol-terminated poly(N-isopropylacrylamide) to CdS and noble metal nanoparticles. The size and morphology of the PNIPAM-grafted colloidal nanoparticles of CdS@PNIPAM can be tuned by changing the molar ratio of PNIPAM/CdS. The size of CdS@PNIPAM nanoparticles slightly decreases first from 5.5 to 4.4 nm then slightly increases from 4.4 to 6.1 nm with the decrease in the molar ratio from 1/1 to 1/10. Spherical nanoparticles of CdS@PNIPAM are synthesized at a higher molar ratio and worm-like nanoparticles are obtained at a lower molar ratio. The resultant PNIPAM-grafted colloidal nanoparticles of CdS@PNIPAM, Au@PNIPAM, Pd@PNIPAM, and Ag@PNIPAM are thermoresponsive in water and show a cloud-point temperature at about 32.5 degrees C.  相似文献   

13.
In this work, copper nanoparticles were in situ generated in cotton fabrics by simple hydrothermal method. These low-cost nanocomposite fabrics were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, thermogravimetric analysis, and antibacterial tests. The presence of spherical nanoparticles was visualized by SEM analysis. FTIR spectra did not show any differences between the peak positions of cotton fabrics and their nanocomposites. The crystallinity of cotton nanocomposites was enhanced by the copper nanoparticles. The cotton nanocomposite fabrics exhibited good antibacterial activity against Escherichia coli bacteria and hence can be considered for medical applications such as wound dressing, surgical aprons, hospital bed materials, etc.  相似文献   

14.
A voltammetric sensor for determination of paracetamol in the presence of morphine is described for the first time. The synthesized CdO nanoparticles were characterized with different methods such as scanning electron microscopy (SEM) and X‐ray diffraction (XRD). The paracetamol and morphine peaks are separated ca. 0.37 and 0.65 V, respectively; hence paracetamol can be analysed in the presence of morphine and more than 21 times of the current excess of paracetamol. The detection limits for paracetamol and morphine were 0.07 and 0.1 μM, respectively. The sensor has been successfully applied for the assay of the above compounds in real samples.  相似文献   

15.
Spontaneous formation and efficient stabilization of colloidal silver nanoparticles were achieved in aqueous four-arm star poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) solution at ambient temperature in the absence of any other reducing agent. In this reaction, four-arm star PDMAEMA acted as both reducing and stabilizing agents for silver nanoparticles. More importantly, four-arm star PDMAEMA is a tertiary-amine-containing star homopolymer, which shows that the scope of the reducing and stabilizing agents for metal nanoparticles can be extended from the general homopolymers and the block copolymers to the water-soluble simple tertiary-amine-containing star homopolymers. Fourier transform infrared, UV–vis absorption spectroscopy, and transmission electron microscopy were used to characterize the synthetic silver nanoparticles. A plausible mechanism for the formation of silver nanoparticles was proposed in the presence of linear and star PDMAEMA homopolymers. Moreover, the size of the resultant silver nanoparticles can be easily tuned by changing the concentrations of AgNO3.  相似文献   

16.
Summary Thermal field-flow fractionation separates polymers with high selectivity according to their Soret coefficient,S τ, hence, according to their molar mass, and therefore consitutes an efficeint physicochemical tool for the determination of the Soret coefficient of a given polymer in the carrier liquid from its retention time. However, the polymer concentration in the sample influences the retention time and, hence, the value ofS τ derived from it. An experimental study of the influence of sample concentration on retention,S τ, and peak shape was performed for the polystyrene-decalin system over a relatively large temperature domain and for various molar masses. It is found that the retention time and the value ofS τ increase with increasing sample concentration, the more so as the cold wall temperature is lower. This appears to be in contradiction with the general non-equilibrium thermodynamic expression derived for polymer-solvent systems with positive second virial coefficients, such as the present system over the temperature range investigated. There seems to be a temperature for which the dependence ofS τ on sample concentration vanishes. This temperature is about 375 K for the polystyrene-decalin system. As the sample concentration increases, the peak barycentre and the standard deviation increases. As the peaks are fronting, the skewness is negative and becomes more negative as the sample concentration increases. The peak skewness appears to be a good indicator of the onset of sample concentration effects. The threshold concentration, for which these effects begin to become significant, decreases with increasing molar mass.  相似文献   

17.
This study explores the kinetics of a new feature, called "induced crystallization (IC)", observed in an Aerosil dispersed octylcyanobiphenyl (8CB) liquid crystal system. Heating rate dependent experiments were performed using modulation differential scanning calorimetry (MDSC) at various heating ramp rates. In the presence of Aerosil nanoparticles, a well-defined exothermic peak was found as an additional feature on the heating scan before the melting transition, which was absent in the bulk 8CB; hence, we like to call it an "IC" as it is induced by Aerosil nanoparticles in the system. The system LC1-xSilx was prepared by mixing Aerosil nanoparticles in the bulk 8CB by the solvent dispersion method (SDM) where LC represents bulk 8CB and Sil represents Aerosil nanoparticles with x as the Aerosil fraction. The concentration of the Aerosil nanoparticles (x) varied from 0 to 0.2 g/cm3 in the bulk 8CB. The IC transition peak showed a temperature shift and change in the shape and size in the presence of Aerosil nanoparticles. In addition, this transition shifted significantly with different heating ramp rates following an Arrhenius behavior showing activated kinetics. The presence of Aerosil nanoparticles caused a significant increase in the enthalpy and decrease in the activation energy for the IC transition as the density of Aerosil nanoparticles increases and showed a saturation for the highest density of Aerosil nanoparticles. This behavior can be explained in terms of molecular disorder and surface molecular interaction induced by adding Aerosil nanoparticles into the bulk of 8CB liquid crystal.  相似文献   

18.
Non-close-packed silica colloidal crystalline array was immobilized by polymer, and effects of stretching on the change of the optical properties and microstructure of the colloidal crystalline arrays have been demonstrated. The immobilization was a two-step polymerization process: the first step was with hydrophilic polyethylene glycol acrylate (PEGA) polymer gel, and the second step was with 2-hydroxyethyl acrylate polymer matrix. The structure of the three-dimensional array was maintained during the immobilizing process with lock in periodic order. The peak wavelength of Bragg diffraction of the polymer-immobilized colloidal crystalline array shifted to shorter wavelength with stretching. The peak shift was caused by the compression of the polymer proportional to the stretching ratio, and the compression was homogeneous throughout the polymer-immobilized colloidal crystalline arrays. These results show that by using polymer-immobilized non-close-packed colloidal crystalline array, mechanically tunable photonic crystals can be realized, and they open the possibility of tuning the microstructure of colloidal crystalline array for photonic crystal.  相似文献   

19.
Assembly of nanoparticles is a promising route to fabricate devices from nanomaterials. Colloidal crystals are well-defined three-dimensional assemblies of nanoparticles with long-range ordered structures and crystalline symmetries. Here, we use a solvent evaporation induced assembly method to obtain colloidal crystals composed of polyhedral sodium rare earth fluoride nanoparticles. The building blocks exhibit the same crystalline orientation in each colloidal crystal as indicated in electron diffraction patterns. The driving force of the oriented assembly is ascribed to the facet-selected capping of oleic acid molecules on {110} facets of the nanoparticles, and the favorable coordination behavior of OA molecules is explained by the steric hindrance determined adsorption based on the studies of the surface atomic structure of nanocrystals and molecular mechanics simulation of OA molecules. The capping ligands also provide hydrophobic interactions between nanoparticles and further direct the oriented assembly process to construct a face-centered cubic structure. These results not only provide a new type of building block for colloidal crystals, but also clarify the important role of surface ligands, which determine the packed structure and orientations of nanoparticles in the assemblies.  相似文献   

20.
We report on the nature of photothermally patterned regions inside self-assembled hydrogel nanoparticle materials containing coassembled colloidal Au. These composite materials are prepared from approximately 226-nm diameter particles composed of the environmentally responsive polymer, poly(N-isopropylacrylamide) (pNIPAm). Upon centrifugation to achieve a proper volume fraction, these close-packed assemblies display a sharp Bragg diffraction peak in the midvisible region of the spectrum and can be reversibly converted into a nondiffracting glassy material as the temperature is raised above the characteristic phase transition temperature of the polymer. The addition of 16-nm colloidal Au prior to centrifugation allows the homogeneous distribution of metal nanoparticles throughout the close-packed material. Localized heating is then possible upon excitation of the Au plasmon absorption with a frequency doubled Nd:YAG laser (lambda = 532 nm). Such localized heating events lead to patterned regions of ordered crystalline phases inside of bulk glassy phases. We illustrate that the nature of the locally patterned area results in the formation of a microlens due to density/refractive index gradient in the patterned crystalline region. The Gaussian power distribution of the incident beam is thought to be a contributing factor in the microlens formation. Microlens formation is shown by observing interference patterns similar to Newton's rings, which change over time as the region is formed. A true hallmark of the lens is also demonstrated by focusing an image through the patterned structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号