首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroacoustics was used to study SDS-stabilized sunflower oil-in-water emulsions, with oil volume fractions between 2% and 50%. The dynamic mobility of the oil droplets was measured; the size and electric charge on the drops were calculated using formulas derived for dilute and concentrated systems and the results were compared. The relation derived for concentrated systems appears to be valid up to at least 50% provided the particles remain within the size range of the instrument, which shifts upward with rising concentration. Conductivity and pH had little effect on particle properties in the range studied; higher oil volume fraction (φ) had a substantial influence on the particle size produced in a homogenizer, but not on the zeta potential. Both median size and spread decreased with increases in φ. In contrast, both size and charge were hardly affected at volume fractions less than 10%. Dilution of the emulsion with a surfactant solution of the same composition as the water phase changed neither the particle size nor the zeta potential. The temperature of the emulsification process had a significant influence on the particle size but the zeta potential was hardly affected. Surfactant concentration had some effect on size at low volume fractions but not for φ>10%. The electroacoustic method hence could be applied to analyze both the dilute and the concentrated emulsions directly. Copyright 2001 Academic Press.  相似文献   

2.
A study of the emulsification of silicone oil and water in the presence of partially hydrophobic, monodisperse silica nanoparticles is described. Emulsification involves the fragmentation of bulk liquids and the resulting large drops and the coalescence of some of those drops. The influence of particle concentration, oil/water ratio, and emulsification time on the relative extents of fragmentation and coalescence during the formation of emulsions, prepared using either batch or continuous methods, has been investigated. For batch emulsions, the average drop diameter decreases with increasing particle concentration as the extent of limited coalescence is reduced. Increasing the oil volume fraction in the emulsion at fixed aqueous particle concentration results in an increase in the average drop diameter together with a dramatic lowering of the uniformity of the drop size distribution as coalescence becomes increasingly significant until catastrophic phase inversion occurs. For low oil volume fractions (phi(o)), fragmentation dominates during emulsification since the mean drop size decreases with emulsification time. For higher phi(o) close to conditions of phase inversion, coalescence becomes more prevalent and the drop size increases with time with stable multiple emulsions forming as a result.  相似文献   

3.
The stability and rheology of tricaprylin oil-in-water emulsions containing a mixture of surface-active hydrophilic silica nanoparticles and pure nonionic surfactant molecules are reported and compared with those of emulsions stabilized by each emulsifier alone. The importance of the preparation protocol is highlighted. Addition of particles to a surfactant-stabilized emulsion results in the appearance of a small population of large drops due to coalescence, possibly by bridging of adsorbed particles. Addition of surfactant to a particle-stabilized emulsion surprisingly led to increased coalescence too, although the resistance to creaming increased mainly due to an increase in viscosity. Simultaneous emulsification of particles and surfactant led to synergistic stabilization at intermediate concentrations of surfactant; emulsions completely stable to both creaming and coalescence exist at low overall emulsifier concentration. Using the adsorption isotherm of surfactant on particles and the viscosity and optical density of aqueous particle dispersions, we show that the most stable emulsions are formed from dispersions of flocculated, partially hydrophobic particles. From equilibrium contact angle and oil-water interfacial tension measurements, the calculated free energy of adsorption E of a silica particle to the oil-water interface passes through a maximum with respect to surfactant concentration, in line with the emulsion stability optimum. This results from a competition between the influence of particle hydrophobicity and interfacial tension on the magnitude of E.  相似文献   

4.
The time dependence of the dynamic mobility and the ultrasonic attenuation of octane and decane oil-in-water emulsions stabilized by sodium dodecyl sulfate (SDS) was measured. The emulsions grew to larger droplets due to Ostwald ripening. The growth rate measured by attenuation depends on the surfactant concentration and the polydispersity of the emulsion. At surfactant concentrations below the critical micelle concentration (cmc) of SDS, the growth was linear with time and the rate was dependent on the polydispersity of the drops; the rate was several times faster than that predicted on the basis of a diffusion growth mechanism. Above the cmc, however, as the droplets grew in size there was a point at which the rate of growth increased, which corresponds to the droplet size at which depletion forces due to the surfactant micelles become significant. Under these conditions both the electroacoustic dynamic mobility and the acoustic attenuation spectra displayed characteristics of flocs: a large decrease in the phase lag at higher frequencies in the dynamic mobility spectrum and a decrease in the attenuation coefficient at low-megahertz frequencies with an increase at higher frequencies. This depletion flocculation enhancement in ripening rates in the presence of SDS micelles provides another, alternative, and self-consistent mechanism for the effect of surfactant micelles on Ostwald ripening.  相似文献   

5.
Water-in-oil microemulsions stabilized by AOT and dispersed in n-alkane oils with a constant molar water-to-surfactant ratio were studied by dynamic light scattering. A dilution series (in the range of volume fraction of water plus surfactant, phi approximately 0.02-0.52) was used, which allowed us to extract information about droplet sizes, diffusion coefficients, interactions, and polydispersity from experimental data. We report the observation of two diffusive relaxation modes in a concentrated microemulsion (0.20 < phi < 0.5) due to density (collective diffusion) and concentration or polydispersity (self-diffusion) fluctuations. Below this concentration it was difficult to resolve two exponentials unambiguously, and in this case one apparent relaxation mode was observed. It was found that for a given composition self-diffusion is more pronounced in apparent relaxation mode for a shorter chain length alkane. The concentration dependence of these diffusion coefficients reflects the effect of hard sphere and the supplementary attractive interactions. It was observed that the attractive part becomes more pronounced in the case of a large alkane chain oil at a given temperature. This explains the shift of the region of microemulsion stability to lower temperatures for higher chain length alkanes. Increase in hydrodynamic radius, Rh, obtained from the diffusion coefficient extrapolated to infinite dilution was observed with increase of alkane chain length. The polydispersity in microemulsion systems is dynamic in origin. Results indicate that the time scale for local polydispersity fluctuations is at least 3 orders of magnitude longer than the estimated time between droplet collisions.  相似文献   

6.
A three-dimensional boundary-integral algorithm is used to study thermocapillary interactions of two deformable drops in the presence of bulk-insoluble, non-ionic surfactant. The primary effect of deformation is to slow down the rate of film drainage between drops in close approach and prevent coalescence in the absence of van der Waals forces. Both linear and non-linear models are used to describe the relationship between interfacial tension and surfactant surface concentration. In the linear model, non-monotonic behavior of the minimum separation between the drops as a function of the surface Peclet number Pe(s) is observed for equal drop and external medium viscosities and thermal conductivities. For bubbles with zero drop-to-medium viscosity and thermal conductivity ratios, however, the minimum separation increases with Pe(s). There is a nearly linear relationship between the minimum drop separation and elasticity E. In the simplest non-linear equation of state, the product of the temperature and the surfactant concentration is retained by allowing non-zero values of the dimensionless gas constant Lambda. For Lambda=O(0.05), it is possible for the smaller drop to move faster than the larger drop. In the Langmuir adsorption framework, the tendency of the smaller drop to catch up to the larger one decreases as the ratio of the equilibrium to maximum surfactant surface concentration increases. Finally, in the Frumkin model, a minimum in the drop separation occurs as a function of the interaction parameter lambda(F) for trajectories with all other parameters held constant.  相似文献   

7.
The dynamic adsorption of polymer/surfactant mixtures containing poly(ethylene oxide) (PEO) with either tetradecyltrimethylammonium bromide (C(14)TAB) or sodium dodecyl sulfate (SDS) has been studied at the expanding air/water interface created by an overflowing cylinder, which has a surface age of 0.1-1 s. The composition of the adsorption layer is obtained by a new approach that co-models data obtained from ellipsometry and only one isotopic contrast from neutron reflectometry (NR) without the need for any deuterated polymer. The precision and accuracy of the polymer surface excess obtained matches the levels achieved from NR measurements of different isotopic contrasts involving deuterated polymer, and requires much less neutron beamtime. The PEO concentration was fixed at 100 ppm and the electrolyte concentration at 0.1 M while the surfactant concentration was varied over three orders of magnitude. For both systems, at low bulk surfactant concentrations, adsorption of the polymer is diffusion-controlled while surfactant adsorption is under mixed kinetic/diffusion control. Adsorption of PEO is inhibited once the surfactant coverage exceeds 2 μmol m(-2). For PEO/C(14)TAB, polymer adsorption drops abruptly to zero over a narrow range of surfactant concentration. For PEO/SDS, inhibition of polymer adsorption is much more gradual, and a small amount remains adsorbed even at bulk surfactant concentrations above the cmc. The difference in behavior of the two mixtures is ascribed to favorable interactions between the PEO and SDS in the bulk solution and at the surface.  相似文献   

8.
以乳化剂十二烷基硫酸钠 (SDS)和共乳化剂十六烷醇 (HD)作为复合乳化体系 ,过氧化二苯甲酰(BPO)和N ,N 二甲基苯胺 (DMA)作为氧化还原引发体系 ,甲基丙烯酸甲酯 丙烯酸丁酯 (MMA BA)作为混合单体 ,制备了分散相占 83 %以上的稳定的超浓乳液 ,然后在低温下引发聚合 .探讨了引发剂浓度、氧化剂与还原剂的摩尔比、乳化剂的浓度、液膜增强剂的种类、聚合温度等因素对聚合稳定性和聚合速率的影响 ,测定并计算得到了聚合速率的公式 ;用激光散射粒度分布仪测定了聚合物乳胶粒子的大小及粒径分布 ,用透射电子显微镜观察了聚合物乳胶粒的形态 ,讨论了乳化剂浓度、聚合温度等对乳胶粒形态、大小的影响  相似文献   

9.
A nonionic-methylated branched hydrocarbon surfactant, octa(ethylene glycol) 2,6,8-trimethyl-4-nonyl ether (5b-C12E8) emulsifies up to 90% CO2 in water with polyhedral cells smaller than 10 microm, as characterized by optical microscopy. The stability of these concentrated CO2/water (C/W) emulsions increases with pressure and in some cases exceeds 24 h. An increase in pressure weakens the attractive van der Waals interactions between the CO2 cells across water and raises the disjoining pressure. It also enhances the solution of the surfactant tail and drives the surfactant from water towards the water-CO2 interface, as characterized by the change in emulsion phase behavior and the decrease in interfacial tension (gamma) to 2.1 mN/m. As the surfactant adsorption increases, the greater tendency for ion adsorption is likely to increase the electrostatic repulsion in the thin lamellae and raise the disjoining pressure. As pressure increases, the increase in disjoining pressure and decrease in the capillary pressure (due to the decrease in gamma) each favor greater stability of the lamellae against rupture. The electrical conductivity is predicted successfully as a function of Bruggeman's model for concentrated emulsions. Significant differences in the stability are observed for concentrated C/W emulsions at elevated pressure versus air/W or C/W foams at atmospheric pressure.  相似文献   

10.
We propose a direct method to measure the equilibrium and dynamic surface properties of surfactant solutions with very low critical micellar concentrations (CMC) using a pendant drop tensiometer. We studied solutions of the nonionic surfactant hexaethylene glycol monododecyl ether (C(12)E(6)) and of the ionic surfactant hexadecyl trimethyl ammonium bromide (CTAB) with concentrated sodium bromide (NaBr). The variation of the surface tension as a function of surface concentration is obtained easily without the need for complex models and compares well with the result obtained using the Gibbs adsorption equation. The time-dependent surface concentration of each surfactant was also measured, and the adsorption process was found to be diffusion-controlled. The diffusion coefficients of the two surfactants can be extracted from the data and were found in very good agreement with literature values, further validating the method.  相似文献   

11.
Using positively charged plate-like layered double hydroxides (LDHs) particles as emulsifier, liquid paraffin-in-water emulsions stabilized solely by such particles are successfully prepared. The effects of the pH of LDHs aqueous dispersions on the formation and stability of the emulsions are investigated here. The properties of the LDHs dispersions at different pHs are described, including particle zeta potential, particle aggregation, particle contact angle, flow behavior of the dispersions and particle adsorption at a planar oil/water interface. The zeta potential decreases with increasing pH, leading to the aggregation of LDHs particles into large flocs. The structural strength of LDHs dispersions is enhanced by increasing pH and particle concentration. The three-phase contact angle of LDHs also increases with increasing pH, but the variation is very small. Visual observation and SEM images of the interfacial particle layers show that the adsorption behavior of LDHs particles at the planar oil/water interface is controlled by dispersion pH. We consider that the particle-particle (at the interface) and particle-interface electrostatic interactions are well controlled by adjusting the dispersion pH, leading to pH-tailored colloid adsorption. The formation of an adsorbed particle layer around the oil drops is crucial for the formation and stability of the emulsions. Emulsion stability improves with increasing pH and particle concentration because more particles are available to be adsorbed at the oil/water interface. The structural strength of LDHs dispersions and the gel-like structure of emulsions also influence the stability of the emulsions, but they are not necessary for the formation of emulsions. The emulsions cannot be demulsified by adjusting emulsion pH due to the irreversible adsorption of LDHs particles at the oil/water interface. TEM images of the emulsion drops show that a thick particle layer forms around the oil drops, confirming that Pickering emulsions are stabilized by the adsorbed particle layers. The thick adsorbed particle layer may be composed of a stable inner particle layer which is in direct contact with the oil phase and a relatively unstable outer particle layer surrounding the inner layer.  相似文献   

12.
Particle-stabilized emulsions comprised of solid droplets   总被引:2,自引:0,他引:2  
We kinetically stabilize oil-in-water emulsions comprising paraffin crystals by adsorbing solid particles (silica) of colloidal size at the oil/water interface. We obtain a set of emulsions that are quiescently stable for a long period of time (months), while the same emulsions are destabilized after only a few hours in the presence of surfactant molecules alone. The emulsions are submitted to a shear stress in order to probe their stability under flow conditions. Partial coalescence and gelation occur when the shear is applied for a sufficiently long period of time. The experiments reveal the existence of a critical droplet mass fraction, phi*, that defines a sharp transition between slow and fast gelation. The process of gelation is rather slow for phi < phi*, occurring at the scale of hours, and becomes almost instantaneous above phi*.  相似文献   

13.
In order to study the effect of charge on the adsorption of surfactants at the air–water interface, two carboxybetaines have been synthesized with different number of separation methylenes between their charged groups. After purification and structure confirmation, the equilibrium and dynamic surface tensions were measured as a function of surfactant concentration for both the cationic and neutral forms of the surfactant molecules. The effect of ionic strength on the adsorption process was also studied. The equilibrium surface tension values were interpreted according to the Langmuir model and the dynamic surface tension data, converted to surface concentration by the Langmuir parameters, are consistent with the assumption of diffusion control over the range of surfactant concentrations studied. The diffusion coefficients show a progressive decrease in the rate of adsorption when the number of methylene units between the betaine charged groups increase.  相似文献   

14.
This paper presents a theoretical model for simulating the adsorption kinetics of a surfactant at the liquid-fluid interface of a pendant drop. The diffusion equation is solved numerically by applying the semidiscrete Galerkin finite element method to obtain the time-dependent surfactant concentration distributions inside the pendant drop and inside the syringe needle that is used to form the pendant drop. With the obtained bulk surfactant concentration distributions, the adsorption at the interface is determined by using the conservation law of mass. It should be noted that the theoretical model developed in this study considers the actual geometry of the pendant drop, the depletion process of the surfactant inside the pendant drop, and the mass transfer of the surfactant from the syringe needle to the pendant drop. The present pendant-drop model is applied to study the adsorption kinetics of surfactant C10E8 (octaethylene glycol mono n-decyl ether) at the water-air interface of a pendant drop. The numerical results show that the Ward and Tordai equation, which was derived for adsorption from a semi-infinite surfactant solution to a planar interface, is unsuitable for interpreting the dynamic surface or interfacial tension data measured by using the pendant-drop-shape techniques, especially at low initial surfactant concentrations. The spherical-drop model, which assumes the pendant drop to be a perfectly spherical drop with the same drop volume, can be used to interpret the dynamic surface or interfacial tension data for pendant drops either with high initial surfactant concentrations or with low initial surfactant concentrations in short adsorption durations only. For pendant drops with low initial surfactant concentrations in long adsorption durations, the theoretical model developed in this study is strongly recommended.  相似文献   

15.
The influence of the non-ionic surfactant Tween 20 on the microstructure of beta-lactoglobulin-stabilized emulsions with substantial excess free protein present was investigated via confocal microscopy. The separate distributions of oil droplets and protein were determined using two different fluorescent dyes. In the emulsion at ambient temperature the excess protein and protein-coated oil droplets were associated together in a reversibly flocculated state. The pore-size distribution of the initial flocculated emulsion was found to depend on the surfactant/protein ratio R, and at higher values of R the system became more inhomogeneous due to areas of local phase separation. Evidence for competitive displacement of protein from the oil-water interface by surfactant was obtained only on heating (from 25 to 85 degrees C) during the process of formation of a heat-set emulsion gel. By measuring fluorescence intensities of the protein dye inside and outside of the oil-droplet-rich areas, we have been able to quantify the evolving protein distribution during the thermal processing. The results are discussed in relation to previous work on the competitive adsorption of proteins and surfactants in emulsions and the effect of emulsion droplets on the rheology of heat-set protein gels.  相似文献   

16.
Viscoelastic properties of highly concentrated toluene-in-water emulsions stabilized by mixtures of bovine serum albumin and a nonionic surfactant, polyoxyethylene(20)sorbitan monooleate, are studied by a dynamic method in a wide frequency range. It is shown that an increase in the relative content of the surfactant results in a suppression of the system elasticity and a decrease in the relaxation time. A direct correlation is found between the dynamic and steady rheological characteristics of the systems under examination. The latter fact confirms indirectly that the viscoelasticity of the emulsions is due to the presence of the high-molecular-mass component in interfacial layers.  相似文献   

17.
The viscous behavior of oil-in-water (O/W) emulsions is studied over a broad range of dispersed-phase concentrations (φ) using a controlled-stress rheometer. At low-to-moderate values of φ (φ<0.60), emulsions exhibit Newtonian behavior. The droplet size does not exert any influence on the viscosity of Newtonian emulsions. However, at higher values of φ, emulsions exhibit shear-thinning behavior. The viscosity of shear-thinning emulsions is strongly influenced by the droplet size; a significant increase in the viscosity occurs when the droplet size is reduced. With the decrease in droplet size, the degree of shear thinning in concentrated emulsions is also enhanced. The viscosity data of Newtonian emulsions are described reasonably well by the cell model of Yaron and Gal-Or (Rheol. Acta 11, 241 (1972)), which takes into account the effects of the dispersed-phase concentration as well as the viscosity ratio of the dispersed phase to continuous phase. The relative viscosities of non-Newtonian emulsions having different droplet sizes but the same dispersed-phase concentration are scaled with the particle Reynolds number. The high shear viscosities of non-Newtonian emulsions can be predicted fairly well by the cell model of Yaron and Gal-Or (Rheol. Acta 11, 241 (1972)). Copyright 2000 Academic Press.  相似文献   

18.
A theoretical model for the dynamic surface tension of an air bubble expanding in surfactant solution is proposed. The model accounts for the effect of convection on the surfactant diffusion and the effect of expansion of the bubble surface during the adsorption of surfactant molecules. Assuming small deviation from equilibrium and constant rate of expansion, an analytical solution for the surface tension and the subsurface concentration as a function of time is derived. The parameters of the model are computed from experimental data for sodium dodecyl sulfate obtained by the maximum bubble pressure method.  相似文献   

19.
Viscosity of emulsions: influence of flocculation   总被引:1,自引:0,他引:1  
  相似文献   

20.
Miyabe K  Okada A 《The Analyst》2002,127(11):1420-1426
Pulse response experiments (i.e., elution chromatography) were made in reversed-phase liquid chromatography (RPLC) using a C18 silica gel column and methanol-water mixtures of different compositions (phi). The moment analysis of the elution peak profiles measured in the RPLC system provided some items of information about four parameters characterizing the retention equilibrium and the mass transfer kinetics in the column, i.e., adsorption equilibrium constant, isosteric heat of adsorption, surface diffusion coefficient and activation energy of surface diffusion. Characteristics of the chromatographic behavior were studied by analyzing the dependence of the four parameters on phi and the correlation between them. It was found that surface diffusion was one of the important processes of molecular migration having a significant contribution to the mass transfer kinetics in the column. Both the adsorption equilibrium constant and the surface diffusion coefficient varied depending on phi. The direction of their changes was approximately opposite, suggesting that the mass transfer in the manner of surface diffusion was restricted owing to the retention of the sample molecules on the stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号