首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier transform infrared absorption spectra containing evidence for about two dozen spectral tunneling doublets are reported for gaseous tropolone(OH), tropolone (OD), and 18O,18O-tropolone(OH) in the 800 to 300 cm-1 spectral range. No FTIR absorption was detected in the 300-150 cm-1 range. The known zero-point (ZP) tunneling splitting values Delta0 = 0.974 cm-1 for tropolone(OH) (Tanaka et al.) and 0.051 cm-1 for tropolone(OD) (Keske et al.) allow vibrational state-specific tunneling splittings Deltav to be estimated for fundamentals including three with strong O...O stretching displacements [cf. for tropolone(OH) nu13(a1) = 435.22 cm-1 with HDelta13 = 1.71 cm-1 = 1.76 HDelta0, and for tropolone(OD) nu13(a1) = 429.65 cm-1 with DDelta13 = 0.32 cm-1 = 6.27 DDelta0]. The majority of Deltav splittings in the sub-800 cm-1 range are dilated relative to the isotopomer Delta0 values. The FTIR spectra demonstrate the presence of dynamic couplings and potential function anharmonicity in addition to revealing Deltav splittings and many OH/D and 18O/16O isotope effects. Approximate values are obtained for the ZP splittings 88Delta0 and 86Delta0 of the doubly and singly 18O-labeled isotopomers of tropolone(OH). The diverse values of the observed Deltav/Delta0 splitting ratios underscore the inherent multidimensionality and corner-cutting activities entering the state-specific tunneling processes of the tropolone tautomerization reaction.  相似文献   

2.
The semiclassical tunneling method is applied to evaluate the tunneling splitting of tropolone due to the intramolecular proton transfer in the electronic excited state, first time, in a framework of the trajectory on-the-fly molecular dynamics (TOF-MD) approach. To prevent unphysical zero-point vibrational energy transfer among the normal modes of vibration, quantum zero-point vibrational energies are assigned only to the vibrational modes related to intramolecular proton transfer, whereas the remaining modes are treated as bath modes. Practical ways to determine the tunnel-initiating points and tunneling path are introduced. It is shown that the tunneling splitting decreases as the bath-mode energy increases. The experimental tunneling splitting value is well reproduced by the present TOF-MD approach based on the Wentzel-Kramers-Brillouin (WKB) approximation.  相似文献   

3.
Rotationally resolved microwave (MW) and ultraviolet (UV) spectra of jet-cooled tropolone have been obtained in S(0) and S(1) electronic states using Fourier-transform microwave and UV-laser/molecular-beam spectrometers. In the ground electronic state, the MW spectra of all heavy-atom isotopomers including one (18)O and four (13)C isotopomers were observed in natural abundance. The OD isotopomer was obtained from isotopically enriched samples. The two lowest tunneling states of each isotopomer except (18)O have been assigned. The observed inversion splitting for the OD isotopomer is 1523.227(5) MHz. For the asymmetric (13)C structures, the magnitudes of tunneling-rotation interactions are found to diminish with decreasing distance between the heavy atom and the tunneling proton. In the limit of closest approach, the 0(+) state of (18)O was well fitted to an asymmetric rotor Hamiltonian, reflecting significant changes in the tautomerization dynamics. Comparisons of the substituted atom coordinates with theoretical predictions at the MP2/aug-cc-pVTZ level of theory suggest the localized 0(+) and 0(-) wave functions of the heavier isotopes favor the C-OH and C=O forms of tropolone, respectively. The only exception occurs for the (13)C-OH and (13)C[Double Bond]O structures which correlate to the 0(-) and 0(+) states, respectively. These preferences reflect kinetic isotope effects as quantitatively verified by the calculated zero-point energy differences between members of the asymmetric atom pairs. From rotationally resolved data of the 0(+) <--0(+) and 0(-) <--0(-) bands in S(1), line-shape fits have yielded Lorentzian linewidths that differ by 12.2(16) MHz over the 19.88(4) cm(-1) interval in S(1). The fluorescence decay rates together with previously reported quantum yield data give nonradiative decay rates of 7.7(5) x 10(8) and 8.5(5) x 10(8) s(-1) for the 0(+) and 0(-) levels of the S(1) state of tropolone.  相似文献   

4.
The mode specificity of proton-transfer dynamics in the ground electronic state (X (1)A(1)) of tropolone has been explored at near-rotational resolution by implementing a fully coherent variant of stimulated emission pumping within the framework of two-color resonant four-wave mixing spectroscopy. Three low-lying (E(vib) approximately 550-750 cm(-1)) vibrational features, assigned to nu(30)(a(1)), nu(32)(b(2)), and nu(31)nu(38)(a(1)), have been interrogated under ambient, bulk-gas conditions, with term energies determined for the symmetric and antisymmetric (tunneling) components of each enabling the attendant tunneling-induced bifurcations of 1.070(9), 0.61(3), and 0.07(2) cm(-1) to be extracted. The dependence of tunneling rate (or hydron migration efficiency) on vibrational motion is discussed in terms of corresponding atomic displacements and permutation-inversion symmetries for the tropolone skeleton.  相似文献   

5.
The ground electronic state (X 1A1) of tropolone has been examined theoretically by exploiting extensive sets of basis functions [e.g., 6-311++G(d,p) and aug-cc-pVDZ] in conjunction with the high levels of electron correlation made possible by density functional (DFT/B3LYP), Moller-Plesset perturbation (MP2), and coupled-cluster [CCSD and CCSD(T)] methods. Unconstrained MP2 and CCSD optimization procedures performed with the reference 6-311++G(d,p) basis predict a slightly nonplanar equilibrium structure characterized by a small barrier to skeletal inversion (< or =10 cm(-1) magnitude). Complementary harmonic frequency analyses have shown this nonplanarity to be a computational artifact arising from adversely tuned carbon d-orbital exponents embodied in the standard definitions of several Pople-type basis sets. Correlation-consistent bases such as Dunning's aug-cc-pVDZ are less susceptible to these effects and were employed to confirm that the X 1A1 hypersurface supports a rigorously planar global minimum. The fully optimized geometries and vibrational force fields obtained by applying potent coupled-cluster schemes to the relaxed-equilibrium (Cs) and transition-state (C2v) conformers of tropolone afford a trenchant glimpse of the key features that mediate intramolecular hydron exchange in this model system. By incorporating perturbative triples corrections at the substantial CCSD(T) level of theory, an interoxygen distance of r(O...O)=2.528 A was determined for the minimum-energy configuration, with the accompanying proton-transfer reaction being hindered by a barrier of 2557.0 cm(-1) height. The potential energy landscape in tropolone, as well as the nature of the attendant hydron migration process, is discussed within the framework of the encompassing G4 molecular symmetry group.  相似文献   

6.
Based on the Cartesian Reaction Surface framework we construct a four-dimensional potential for the tropolone derivative 3,7-dichlorotropolone, a molecule with an intramolecular O-H...O hydrogen bond. The reduced configuration space involves the in-plane hydrogen atom coordinates, a symmetric O-O vibrational mode, and an antisymmetric mode related to deformations of the seven-membered ring. The system is characterized in terms of quantum mechanical computations of the low-lying eigenstates as well as a classical and semiclassical analysis of spectra obtained via Fourier transforming autocorrelation functions. For the semiclassical analysis we utilize the amplitude-free correlation function method [K. Hotta and K. Takatsuka, J. Phys. A 36, 4785 (2003)]. Our results demonstrate substantial anharmonic couplings leading to highly correlated wave functions even at moderate energies. Furthermore, the importance of dynamical tunneling in tropolone is suggested since many low-lying states--including the ground state--lie above the classical saddle point but nevertheless appear as split pairs.  相似文献   

7.
We have calculated reaction rates for the reactions O + HD → OH + D and O + DH → OD + H using improved canonical variational transition state theory and least-action ground-state transmission coefficients with an ab initio potential energy surface. The kinetic isotope effects are in good agreement with experiment. The optimized tunneling paths and properties of the variational transition states and the rate enhancement for vibrationally excited reactants are also presented and compared with those for the isotopically unsubstituted reaction O + H2 → OH + H. The thermal reactions at low and room temperature are predicted to occur by tunneling at extended configurations, i.e., to initiate early on the reaction path and to avoid the saddle point regions. Tunneling also dominates the low and room temperature reactions for excited vibrational states, but in these cases the results are not as sensitive to the nature of the tunneling path. Overbarrier mechanisms dominate for both thermal and excited-vibrational state reactions for T > 600 K. For the excited-state reaction (with initial vibrational quantum number n > 0) a transition state switch occurs for T > 1000 K for the O + HD(n = 1) → OD + H case and for T > 1500 K for the O + DH(n = 1) → OD + H reaction, and this may be a general phenomenon for excited-state reactions at higher temperature. In the present case the switch occurs from an early variational transition state where the vibrationally adiabatic approximation is expected to be valid to a tighter variational transition state where nonadiabatic effects are probably important and should be included.  相似文献   

8.
9.
The paper describes the quantized Hamilton dynamics (QHD) approach that extends classical Hamiltonian dynamics and captures quantum effects, such as zero point energy, tunneling, decoherence, branching, and state-specific dynamics. The approximations are made by closures of the hierarchy of Heisenberg equations for quantum observables with the higher order observables decomposed into products of the lower order ones. The technique is applied to the vibrational energy exchange in a water molecule, the tunneling escape from a metastable state, the double-slit interference, the population transfer, dephasing and vibrational coherence transfer in a two-level system coupled to a phonon, and the scattering of a light particle off a surface phonon, where QHD is coupled to quantum mechanics in the Schrödinger representation. Generation of thermal ensembles in the extended space of QHD variables is discussed. QHD reduces to classical mechanics at the first order, closely resembles classical mechanics at the higher orders, and requires little computational effort, providing an efficient tool for treatment of the quantum effects in large systems.  相似文献   

10.
The CO3 molecule is considered an important reaction intermediate in the atmospheres of Earth and Mars for quenching electronically excited oxygen atoms and in contributing to the anomalous 18O isotope enrichment. The geometry of the CO3 intermediate plays an important role in explaining these effects; however, only the cyclic (C(2v)) isomer has been experimentally confirmed so far. Here, we report on the first spectroscopic detection of the acyclic (D(3h)) isomer of carbon trioxide (12C16O3) via its nu1 and nu2 vibrational modes centered around 1165 cm(-1) under matrix isolation conditions; the identification of the 12C18O3, 13C16O3, 13C18O3, 16O12C18O2, and 18O12C16O2 isotopomers of the acyclic isomer confirms the assignments.  相似文献   

11.
We present a new parametrization (based on ab initio calculations) of the bending potentials for the two lowest potential energy surfaces of the reaction O(3P) + H2, and we use it for rate constant calculations by variational transition-state theory with multidimensional semiclassical tunneling corrections. We present results for the temperature range 250–2400 K for both the rate constants and the intermolecular kinetic isotope effects for the reactions of O(3P) with D2 and HD. In general, the calculated rate constants for the thermal reactions are in excellent agreement with available experiments. We also calculate the enhancement effect for exciting H2 to the first excited vibrational state. The calculations also provide information on which aspects of the potential energy surfaces are important for determining the predicted rate constants.  相似文献   

12.
The effects of aqueous solvation on the structure and vibrational frequencies of phenol, para-cresol, and their respective radicals are calculated at the B3LYP/6-31+G(d,p) level of theory using the conductor-like polarizable continuum model (C-PCM) alone and in combination with an explicit water molecule H-bonded to the phenolic oxygen. Calculated vibrational frequencies are compared to experimental frequencies obtained in aqueous buffer at high pH. For all models, the C-PCM provides the best overall agreement between theory and experiment at a modest computational effort, as demonstrated by the lowest mean absolute deviations in the computed frequencies. In addition, the C-PCM provides anion Wilson mode 7a (18)O isotope shifts in excellent agreement with experiment and improves agreement between the computed and observed radical Wilson mode 7a (2)H isotope shift. On the basis of a quantitative comparison of the anion and radical normal modes by vibrational projection analysis and total energy decomposition, an alternative criterion for distinguishing the anion and radical Wilson modes 7a and 19a using the relative phasing of the carbon-oxygen and carbon-carbon bond stretches is presented.  相似文献   

13.
Studies of the electronic spectroscopy of tropolone in a variety of media are reviewed. Attempts to understand the effects of the surrounding medium on tropolone in its ground and first excited singlet states by studying the spectra and dynamics of its van der Waals complexes are described. The van der Waals complexes studied to date fall into two groups. Those which are primarily dispersively bound exhibit red microscopic solvent shifts, have observable tunneling doublet splittings and have structures in which the solvent species are bound above and below the plane of the chromophore in the 1∶1 and 1∶2 clusters. Those which are primarily hydrogen-bonded exhibit blue microscopic solvent shifts and exhibit no observable tunneling doublets.  相似文献   

14.
The rate constants for the gas‐phase SN2 reaction of F?(H2O) with CH3F have been calculated using the dual‐level variational transition state theory including multidimensional tunneling from 50 to 500 K. Tunneling was found to dominate the reaction below 200 K. The deuterium, 13C, and 14C kinetic isotope effects (KIEs) and solvent (D2O) isotope effects (SKIEs) were also calculated in the same temperature range. The results indicated that the deuterium and heavy water substitutions resulted in inverse KIEs (0.6~0.8 ) while the 13C and 14C substitutions resulted in normal KIEs (1.0~1.2) at room temperature. The calculated carbon KIEs increased significantly below 80 K due to the differences in the magnitude of the tunneling effects for different isotopic substitutions.  相似文献   

15.
Spectral doublet separations reported for gas phase and neon matrix-isolated samples of tropolone(OH) and tropolone(OD) are found to support recent work suggesting the possibility that tropolone has a slightly nonplanar geometry in the S1 (A 1B2) (pi*-pi) electronic state. Tautomerizations of gaseous tropolones in the S0 and S1 states are governed by equal double-minimum potential energy functions (PEFs), but interactions in the neon matrix environment transform the tautomerization PEFs of the slightly nonplanar S1 tropolones into unequal double-minimum PEFs. The spectral doublets reported for the zero-point S1-S0 transitions imply energy minima for the nonplanar S1 state in a neon matrix are offset by about 7 cm-1, and tunneling splittings in the symmetric double minimum PEFs of the gaseous molecules are damped about 2 cm-1 by the matrix environment. This means gas phase tunneling splittings smaller than 2 cm-1 are fully quenched in the neon matrix, and gas phase tunneling splittings near 20 cm-1 are damped by only 10%.  相似文献   

16.
《Chemical physics》1987,114(1):85-93
Three-dimensional quasiclassical trajectory calculations were carried out for the reaction of oxygen atoms O(3P) with hydrogen iodide molecules (HI and DI) for the temperature range 200–550 K, using a LEPS potential-energy surface. The calculated results include reaction cross sections, rate constants, kinetic isotope effects, the influence of vibrational and rotational excitation of the reactants on the dynamics, and the product energy partitioning and angular distribution. The calculated results are in good agreement with the available experimental results. The dynamics of the O + HI reaction is discussed in view of the associated mass combination H + LH′ (H and H′ are heavy atoms and L is a light atom), and in relation to earlier trajectory results for the reactions O + HCl and O + HBr.  相似文献   

17.
The population lifetimes of the bend fundamental of dilute water in liquid chloroform (8.5 ps) and d-chloroform (28.5 ps) display an interesting solvent isotope effect. As the lowest excited vibrational state of the molecule, the water bend fundamental relaxes directly to the ground state with about 1600 cm-1 of energy released to the other degrees of freedom. The strong solvent isotope effect along with the large energy gap indicates the participation of solvent vibrational modes in this vibrational energy relaxation process. We calculate the vibrational energy relaxation rates of the water bend in chloroform and d-chloroform using the Landau-Teller formula with a new potential model developed and parametrized self-consistently to describe the chloroform-water interaction. The computed values are in reasonable agreement with the experimental results, and the trend for the isotope effect is correct. It is found that energy transfer to the solvent vibrations does indeed play an important role. Nevertheless, no single dominant solvent accepting mode can be identified; the relaxation appears to involve both the bend and the C-Cl stretches, and frequency changes of all of these modes upon deuteration contribute to the observed solvent isotope effect.  相似文献   

18.
A theoretical investigation of proton-coupled electron transfer in ruthenium polypyridyl complexes is presented. The three reactions studied are as follows: (1) the comproportionation reaction of [(bpy)(2)(py)Ru(IV)O](2+) and [(bpy)(2)(py)Ru(II)OH(2)](2+) to produce [(bpy)(2)(py)Ru(III)OH](2+); (2) the comproportionation reaction of [(tpy)(bpy)Ru(IV)O](2+) and [(tpy)(bpy)Ru(II)OH(2)](2+) to produce [(tpy)(bpy)Ru(III)OH](2+); and (3) the cross reaction of [(tpy)(bpy)Ru(III)OH](2+) and [(bpy)(2)(py)Ru(II)OH(2)](2+) to produce [(tpy)(bpy)Ru(II)OH(2)](2+) and [(bpy)(2)(py)Ru(III)OH](2+). This investigation is motivated by experimental measurements of rates and kinetic isotope effects for these systems (Binstead, R. A.; Meyer, T. J. J. Am. Chem. Soc. 1987, 109, 3287. Farrer, B. T.; Thorp, H. H. Inorg. Chem. 1999, 38, 2497.). These experiments indicate that the second reaction is nearly one order of magnitude faster than the first reaction, and the third reaction is in the intermediate regime. The experimentally measured kinetic isotope effects for these three reactions are 16.1, 11.4, and 5.8, respectively. The theoretical calculations elucidate the physical basis for the experimentally observed trends in rates and kinetic isotope effects, as well as for the unusually high magnitude of the kinetic isotope effects. In this empirical model, the proton donor-acceptor distance is predicted to be largest for the first reaction and smallest for the third reaction. This prediction is consistent with the degree of steric crowding near the oxygen proton acceptor for the three reactions. The second reaction is faster than the first reaction since a smaller proton donor-acceptor distance leads to a larger overlap between the reactant and product proton vibrational wave functions. The intermediate rate of the third reaction is determined by a balance among several competing factors. The observed trend in the kinetic isotope effects arises from the higher ratio of the hydrogen to deuterium vibrational wave function overlap for larger proton donor-acceptor distances. Thus, the kinetic isotope effect increases for larger proton donor-acceptor distances. The unusually high magnitude of the kinetic isotope effects is due in part to the close proximity of the proton transfer interface to the electron donor and acceptor. This proximity results in strong electrostatic interactions that lead to a relatively small overlap between the reactant and product vibrational wave functions.  相似文献   

19.
Identifying intermediates in catalytic oxidation reactions requires the development of new probes of structure and mechanism. Reported here are proof-of-concept studies of oxygen (18O) isotope effects upon reversible O2-binding reactions of classic inorganic compounds. It is shown that the 18O equilibrium isotope effects may be used to differentiate structures where O2 is bound as a side-on peroxide ligand versus an end-on superoxide ligand. The application of 18O equilibrium isotope effects to the interpretation of 18O kinetic isotope effects and the study of O2 activation mechanisms is also discussed.  相似文献   

20.
Apo-glucose oxidase has been reconstituted with flavins modified in the 7 and 8 positions and characterized with regard to the catalytic rate of O(2) reduction and oxygen-18 isotope effects on this process. Kinetic studies as a function of driving force indicate a reorganization energy for electron transfer to O(2) of lambda = 28 kcal mol(-)(1) at optimal pH, which is similar to the value obtained earlier from temperature dependencies of rates (Roth, J. P.; Klinman, J. P. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 62-67). For the various enzyme-bound flavins, competitive oxygen-18 kinetic isotope effects fall within the narrow range of 1.0266(5) to 1.0279(6), apparently because of the dominant contribution of outer-sphere reorganization to the activation barrier; within the context of semiclassical and quantum mechanical electron transfer theories, the magnitude of the isotope effects reveals the importance of nuclear tunneling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号