首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider the cooling of vibrational degrees of freedom in a photoinduced excited electronic state of a model molecular system. For the various parameters of the potential surfaces of the ground and excited electronic states and depending on the excitation frequency of a single-mode laser light, the average energy or average vibrational temperature of the excited state passes through a minimum. The amount of cooling is quantified in terms of the overlap integral between the ground and excited electronic states of the molecule. We have given an approach to calculate the Franck-Condon factor for a multimode displaced-distorted-rotated oscillator surface of the molecular system. This is subsequently used to study the effect of displacement, distortion, and Duschinsky rotation on the vibrational cooling in the excited state. The absorption spectra and also the average energy or the effective temperature of the excited electronic state are studied for the above model molecular system. Considering the non-Condon effect for the symmetry-forbidden transitions, we have discussed the absorption spectra and average temperature in the excited-state vibrational manifold.  相似文献   

2.
A method to enhance sampling of a small subset of N(h) particular degrees of freedom of a system of N(h) + N(l) degrees of freedom is presented. It makes use of adiabatically decoupling these degrees of freedom by increasing their mass followed by either increasing their temperature or reducing their interaction or the force acting on them. The appropriate statistical-mechanical expressions for use of these methods in simulation studies are derived. As long as the subset of mass-increased degrees of freedom is small compared to the total number of degrees of freedom of the system, sampling of this subset of degrees of freedom can be much enhanced at the cost of a slight perturbation of the configurational distribution. This is illustrated for a test system of 1000 SPC, simple point charge, water molecules at 300 K and a density of 997 kg m(-3). Various fractions N(h)/(N(h) + N(l)) of water molecules were adiabatically decoupled to different degrees. The size of the diffusion coefficient of these decoupled water molecules was used as a measure for how much the sampling was enhanced and the average potential energy per water molecule was used as a measure of how much the configurational distribution of the system gets distorted. A variety of parameter values was investigated and it was found that for N(h)/(N(h) + N(l)) ≤ 0.1 the diffusion of the N(h) molecules could be enhanced by factors up to 35 depending on the method, the ratio N(h)/(N(h) + N(l)), the extent of adiabatic decoupling, and the temperature or force scaling factors, at the cost of a slight perturbation of the configurational distribution.  相似文献   

3.
New analytical bending and stretching, ground electronic state, potential energy surfaces for CH(3)F are reported. The surfaces are expressed in bond-length, bond-angle internal coordinates. The four-dimensional stretching surface is an accurate, least squares fit to over 2000 symmetrically unique ab initio points calculated at the CCSD(T) level. Similarly, the five-dimensional bending surface is a fit to over 1200 symmetrically unique ab initio points. This is an important first stage towards a full nine-dimensional potential energy surface for the prototype CH(3)F molecule. Using these surfaces, highly excited stretching and (separately) bending vibrational energy levels of CH(3)F are calculated variationally using a finite basis representation method. The method uses the exact vibrational kinetic energy operator derived for XY(3)Z systems by Manson and Law (preceding paper, Part I, Phys. Chem. Chem. Phys., 2006, 8, DOI: 10.1039/b603106d). We use the full C(3v) symmetry and the computer codes are designed to use an arbitrary potential energy function. Ultimately, these results will be used to design a compact basis for fully coupled stretch-bend calculations of the vibrational energy levels of the CH(3)F system.  相似文献   

4.
An approach is developed in the replica exchange framework to enhance conformational sampling for the quantum mechanical (QM) potential based molecular dynamics simulations. Importantly, with our enhanced sampling treatment, a decent convergence for electronic structure self-consistent-field calculation is robustly guaranteed, which is made possible in our replica exchange design by avoiding direct structure exchanges between the QM-related replicas and the activated (scaled by low scaling parameters or treated with high "effective temperatures") molecular mechanical (MM) replicas. Although the present approach represents one of the early efforts in the enhanced sampling developments specifically for quantum mechanical potentials, the QM-based simulations treated with the present technique can possess the similar sampling efficiency to the MM based simulations treated with the Hamiltonian replica exchange method (HREM). In the present paper, by combining this sampling method with one of our recent developments (the dual-topology alchemical HREM approach), we also introduce a method for the sampling enhanced QM-based free energy calculations.  相似文献   

5.
We have developed a method to search potential energy surfaces which avoids some of the difficulties associated with trapping in local minima. Steps are directly taken between minima using eigenvector-following. Exploration of this space by low temperature Metropolis Monte Carlo is a useful global optimisation tool. This method successfully finds the lowest energy icosahedral minima of Lennard- Jones clusters from random starting configurations, but cannot find the global minimum in a reasonable time for difficult cases such as the 38-atom Lennard-Jones cluster where the face-centred-cubic truncated octahedron is lowest in energy. However, by performing searches at higher temperatures, we have found a pathway between the truncated octahedron and the lowest energy icosahedral minima. Such a pathway may be illustrative of some of the structural transformations that are observed for supported metal clusters by electron microscopy.  相似文献   

6.
Understanding and modeling the interaction between light and matter is essential to the theory of optical molecular control. While the effect of the electric field on a molecule's electronic structure is often not included in control theory, it can be modeled in an optimal control algorithm by a set or toolkit of potential energy surfaces indexed by discrete values of the electric field strength where the surfaces are generated by Born-Oppenheimer electronic structure calculations that directly include the electric field. Using a new optimal control algorithm with a trigonometric mapping to limit the maximum field strength explicitly, we apply the surface-toolkit method to control the hydrogen fluoride molecule. Potential energy surfaces in the presence and absence of the electric field are created with two-electron reduced-density-matrix techniques. The population dynamics show that adjusting for changes in the electronic structure of the molecule beyond the static dipole approximation can be significant for designing a field that drives a realistic quantum system to its target observable.  相似文献   

7.
8.
We use our rigid rotor He-LiH potential energy surface [B. K. Taylor and R. J. Hinde, J. Phys. Chem. 111, 973 (1999)] as a starting point to develop a three-dimensional potential surface that describes the interaction between He and a rotating and vibrating LiH molecule. We use a fully quantum treatment of the collision dynamics on the current potential surface to compute rovibrational state-to-state cross sections. We compute excitation and relaxation vibrational rate constants as a function of temperature by integrating these cross sections over a Maxwell-Boltzmann translational energy distribution and summing over Boltzmann-weighted initial rotational levels. The rate constants for vibrational excitation of LiH are very small for temperatures below 300 K. Rate constants for vibrational relaxation of excited LiH molecules, however, are several orders of magnitude larger and show very little temperature dependence, suggesting that the collisions that result in vibrational relaxation are governed by long-range attractive interactions.  相似文献   

9.
It is a common practice to approximate the desorption rate of atoms from crystal surfaces with an expression of the form nueff exp(-DeltaE/kBT), where DeltaE is an activation barrier to desorb and nueff is an effective vibrational frequency approximately 10(12) s(-1). For molecular solids, however, such an approximation can lead to a many orders of magnitude underestimation of vapor pressure and sublimation rates due to neglected contributions from molecular internal degrees of freedom. Here, we develop a simple working formula that yields good estimates for a general molecular (or atomic) solid and illustrate the approach by computing equilibrium vapor pressure of three different molecular solids and an atomic solid, as well as the desorption rate of a foreign (inhibitor) molecule from the surface of a molecular solid.  相似文献   

10.
The reaction path is shown to be always a gradient line on a potential energy surface (PES ) of a molecule. The properties of gradient lines on the PES are elucidated. Correct symmetry conservation rules along the gradient line are derived. The behavior of the gradient line on a PES with different topologies are considered. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
12.
13.
A symplectic multiple-time-step (MTS) algorithm has been developed for the united-residue (UNRES) force field. In this algorithm, the slow-varying forces (which contain most of the long-range interactions and are, therefore, expensive to compute) are integrated with a larger time step, termed the basic time step, and the fast-varying forces are integrated with a shorter time step, which is an integral fraction of the basic time step. Based on the split operator formalism, the equations of motion were derived. Separation of the fast- and slow-varying forces leads to stable molecular dynamics with longer time steps. The algorithms were tested with the Ala(10) polypeptide chain and two versions of the UNRES force field: the current one in which the energy components accounting for the energetics of side-chain rotamers (U(rot)) can lead to numerically unstable forces and a modified one in which the the present U(rot) was replaced by a numerically stable expression which, at present, is parametrized only for polyalanine chains. With the modified UNRES potential, stable trajectories were obtained even when extending the basic time step to 15 fs and, with the original UNRES potentials, the basic time step is 1 fs. An adaptive multiple-time-step (A-MTS) algorithm is proposed to handle instabilities in the forces; in this method, the number of substeps in the basic time step varies depending on the change of the magnitude of the acceleration. With this algorithm, the basic time step is 1 fs but the number of substeps and, consequently, the computational cost are reduced with respect to the MTS algorithm. The use of the UNRES mesoscopic energy function and the algorithms derived in this work enables one to increase the simulation time period by several orders of magnitude compared to conventional atomic-resolution molecular dynamics approaches and, consequently, such an approach appears applicable to simulating protein-folding pathways, protein functional dynamics in a real molecular environment, and dynamical molecular recognition processes.  相似文献   

14.
The systematic variation of the van der Waals surface energy with fluorination for a series of self-assembled monolayers (SAMs) generated by the adsorption of partially fluorinated alkanethiols onto the surface of gold is examined experimentally and theoretically. The surface energy is elucidated on the basis of an effective Hamaker constant, which is obtained as a combination of the respective Hamaker constants of fluorocarbons and hydrocarbons; the fraction depends on the degree of fluorination. The good agreement between experiment and theory is discussed. In addition, the Hamaker constants of various liquids contacted on the well-defined hydrophobic surfaces are interpreted using modified Lifshitz theory.  相似文献   

15.
GVB /[5s3p1d/3s1p] energies were calculated for 31 geometries of cyclobutadiene in the D2h point group. These geometries differed in the values of the symmetrized internal coordinates for two CC stretching and one CCH bending modes. The data points were fitted to the expansions of in powers of . Variational calculations provided the following energies of the lowest Ag vibrational levels (with respect to the vibrational ground state): 4.4; 1161.2; 1162.3; 1304.0; 1322.8; 1920.3; and 1991.0 cm?1.  相似文献   

16.
We present here a cell model for evaluating Gibbs energy barriers corresponding to bimolecular reactions (or processes of larger molecularity) in which a loss of translational degrees of freedom takes place along the reaction coordinate. With this model, we have studied the Walden inversion processes: Xa- + H3CXb --> XaCH3 + Xb- (X = F, Cl, Br, and I). In these processes, our model yields an increase of about 2.3-3.4 kcal/mol in Gibbs energy in solution corresponding to the loss of the translational degrees of freedom when passing from separate reactants to the TS in good agreement with experimental data. The corresponding value in the gas phase is about 6.7-7.1 kcal/mol. When the difference between these two figures is used to correct the results obtained by the standard UAHF implementation of the continuum model, the theoretical results are brought significantly closer to the experimental ones. This seems to indicate that for these reactions the parametrization used does not adequately introduce the increase in Gibbs energy corresponding to the constriction of the translational motion of the species along the reaction coordinate when passing from the gas phase to solution. Therefore, we believe that continuum models could perform much better if we released the parametrization process from the task of taking into account the constriction in translation motion in solution, which could be more adequately evaluated using the cell model proposed here, thus allowing it to focus on better reproducing all the remaining solvation effects.  相似文献   

17.
A kink-based path integral method, previously applied to atomic systems, is modified and used to study molecular systems. The method allows the simultaneous evolution of atomic and electronic degrees of freedom. The results for CH4, NH3, and H2O demonstrate this method to be accurate for both geometries and energies. A comparison with density functional theory (DFT) and second-order Moller-Plesset (MP2) level calculations show the path integral approach to produce energies in close agreement with MP2 energies and geometries in close agreement with both DFT and MP2 results.  相似文献   

18.
The way in which enzymes influence the rate of chemical processes is still a question of debate. The protein promotes the catalysis of biochemical processes by lowering the free energy barrier in comparison with the reference uncatalyzed reaction in solution. In this article we are reporting static and dynamic aspects of the enzyme catalysis in a bimolecular reaction, namely a methyl transfer from S-adenosylmethionine to the hydroxylate oxygen of a substituted catechol catalyzed by catechol O-methyltransferase. From QM/MM optimizations, we will first analyze the participation of the environment on the transition vector. The study of molecular dynamics trajectories will allow us to estimate the transmission coefficient from a previously localized transition state as the maximum in the potential of mean force profile. The analysis of the reactive and nonreactive trajectories in the enzyme environment and in solution will also allow studying the geometrical and electronic changes, with special attention to the chemical system movements and the coupling with the environment. The main result, coming from both analyses, is the approximation of the magnesium cation to the nucleophilic and the hydroxyl group of the catecholate as a result of a general movement of the protein, stabilizing in this way the transition state. Consequently, the free energy barrier of the enzyme reaction is dramatically decreased with respect to the reaction in solution.  相似文献   

19.
ABSTRACT

Docking represents one of the most popular computational approaches in drug design. It has reached popularity owing to capability of identifying correct conformations of a ligand within an active site of the target-protein and of estimating the binding affinity of a ligand that is immensely helpful in prediction of compound activity. Despite many success stories, there are challenges, in particular, handling with a large number of degrees of freedom in solving the docking problem. Here, we show that SOL-P, the docking program based on the new Tensor Train algorithm, is capable to dock successfully oligopeptides having up to 25 torsions. To make the study comparative we have performed docking of the same oligopeptides with the SOL program which uses the same force field as that utilized by SOL-P and has common features of many docking programs: the genetic algorithm of the global optimization and the grid approximation. SOL has managed to dock only one oligopeptide. Moreover, we present the results of docking with SOL-P ligands into proteins with moveable atoms. Relying on visual observations we have determined the common protein atom groups displaced after docking which seem to be crucial for successful prediction of experimental conformations of ligands.  相似文献   

20.
Rotational spectra of an open-shell complex, Ar-NO, in the electronic ground state have been analyzed by employing an analysis using a free-rotor model, where previously observed data by Mills et al. [J. Phys. Chem. 90, 3331 (1986); 90, 4961 (1986)] and additional transitions observed by Fourier-transform microwave spectroscopy in the present study are simultaneously analyzed with a standard deviation of the least-squares fit to be 27.5 kHz. A two-dimensional intermolecular potential energy surface for Ar-NO has been determined from the analysis. The determined potential energy surface is compared with those of Ar-OH and Ar-SH, which are also complexes containing an open-shell species with the 2Pi ground electronic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号